-
Notifications
You must be signed in to change notification settings - Fork 78
/
fagcn_trainer.py
141 lines (120 loc) · 5.19 KB
/
fagcn_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# !/usr/bin/env python
# -*- encoding: utf-8 -*-
"""
@File : fagcn_trainer.py
@Time : 2022/5/10 10:55
@Author : Ma Zeyao
"""
import os
# os.environ['CUDA_VISIBLE_DEVICES'] = '0'
# os.environ['TL_BACKEND'] = 'torch'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# 0:Output all; 1:Filter out INFO; 2:Filter out INFO and WARNING; 3:Filter out INFO, WARNING, and ERROR
import argparse
import tensorlayerx as tlx
from gammagl.datasets import Planetoid
from gammagl.models import FAGCNModel
from gammagl.utils import mask_to_index, calc_gcn_norm
from tensorlayerx.model import TrainOneStep, WithLoss
class SemiSpvzLoss(WithLoss):
def __init__(self, net, loss_fn):
super(SemiSpvzLoss, self).__init__(backbone=net, loss_fn=loss_fn)
def forward(self, data, label):
logits = self.backbone_network(data['x'], data['edge_index'], data['edge_weight'], data['num_nodes'])
train_logits = tlx.gather(logits, data['train_idx'])
train_y = tlx.gather(data['y'], data['train_idx'])
loss = self._loss_fn(train_logits, train_y)
return loss
def calculate_acc(logits, y, metrics):
"""
Args:
logits: node logits
y: node labels
metrics: tensorlayerx.metrics
Returns:
rst
"""
metrics.update(logits, y)
rst = metrics.result()
metrics.reset()
return rst
def main(args):
# load cora dataset
if str.lower(args.dataset) not in ['cora', 'pubmed', 'citeseer']:
raise ValueError('Unknown dataset: {}'.format(args.dataset))
dataset = Planetoid(args.dataset_path, args.dataset)
graph = dataset[0]
edge_index = graph.edge_index # do not have self-loop
edge_weight = tlx.convert_to_tensor(calc_gcn_norm(edge_index, graph.num_nodes))
# for mindspore, it should be passed into node indices
train_idx = mask_to_index(graph.train_mask)
test_idx = mask_to_index(graph.test_mask)
val_idx = mask_to_index(graph.val_mask)
net = FAGCNModel(feature_dim=dataset.num_node_features,
hidden_dim=args.hidden_dim,
num_class=dataset.num_classes,
drop_rate=args.drop_rate,
eps=args.eps,
num_layers=args.num_layers,
name="FAGCN")
loss = tlx.losses.softmax_cross_entropy_with_logits
optimizer = tlx.optimizers.Adam(lr=args.lr, weight_decay=args.l2_coef)
metrics = tlx.metrics.Accuracy()
train_weights = net.trainable_weights
loss_func = SemiSpvzLoss(net, loss)
train_one_step = TrainOneStep(loss_func, optimizer, train_weights)
data = {
"x": graph.x,
"y": graph.y,
"edge_index": edge_index,
"edge_weight": edge_weight,
"train_idx": train_idx,
"test_idx": test_idx,
"val_idx": val_idx,
"num_nodes": graph.num_nodes,
}
best_val_acc = 0
for epoch in range(args.n_epoch):
net.set_train()
train_loss = train_one_step(data, graph.y)
net.set_eval()
logits = net(data['x'], data['edge_index'], data['edge_weight'], data['num_nodes'])
val_logits = tlx.gather(logits, data['val_idx'])
val_y = tlx.gather(data['y'], data['val_idx'])
val_acc = calculate_acc(val_logits, val_y, metrics)
print("Epoch [{:0>3d}] ".format(epoch + 1)
+ " train loss: {:.4f}".format(train_loss.item())
+ " val acc: {:.4f}".format(val_acc))
# save best model on evaluation set
if val_acc > best_val_acc:
best_val_acc = val_acc
net.save_weights(args.best_model_path + net.name + ".npz", format='npz_dict')
net.load_weights(args.best_model_path+net.name+".npz", format='npz_dict')
if tlx.BACKEND == 'torch':
net.to(data['x'].device)
net.set_eval()
logits = net(data['x'], data['edge_index'], data['edge_weight'], data['num_nodes'])
test_logits = tlx.gather(logits, data['test_idx'])
test_y = tlx.gather(data['y'], data['test_idx'])
test_acc = calculate_acc(test_logits, test_y, metrics)
print("Test acc: {:.4f}".format(test_acc))
if __name__ == "__main__":
# parameters setting
parser = argparse.ArgumentParser()
parser.add_argument("--lr", type=float, default=0.01, help="learnin rate")
parser.add_argument("--n_epoch", type=int, default=500, help="number of epoch")
parser.add_argument("--hidden_dim", type=int, default=16, help="dimention of hidden layers")
parser.add_argument("--drop_rate", type=float, default=0.6, help="drop_rate")
parser.add_argument("--l2_coef", type=float, default=1e-3, help="l2 loss coeficient")
parser.add_argument("--num_layers", type=int, default=3, help="number of fagcn layers")
parser.add_argument('--eps', type=float, default=0.2, help='epsilon')
parser.add_argument('--dataset', type=str, default='cora', help='dataset')
parser.add_argument("--dataset_path", type=str, default=r'', help="path to save dataset")
parser.add_argument("--best_model_path", type=str, default=r'./', help="path to save best model")
parser.add_argument("--gpu", type=int, default=0)
args = parser.parse_args()
if args.gpu >= 0:
tlx.set_device("GPU", args.gpu)
else:
tlx.set_device("CPU")
main(args)