diff --git a/CHANGELOG.md b/CHANGELOG.md
index d46f9bb49..1c4992b18 100644
--- a/CHANGELOG.md
+++ b/CHANGELOG.md
@@ -33,7 +33,7 @@
- Work Area: Add Collocation Extractor - Filter results - Node/Collocation length
- Work Area: Add Dependency Parser - Filter results
- Work Area: Add Dependency Parser - Search Settings - Match dependency relations
-- Work Area: Add Profiler - Lexical Diversity - Brunét's Index / Honoré's statistic
+- Work Area: Add Profiler - Lexical Density/Diversity - Brunét's Index / Honoré's statistic / Lexical Density
### ✨ Improvements
- Settings: Settings - Part-of-speeach Tagging - Tagsets - Mapping Settings - Allow editing of tagset mapping of spaCy's Catalan, Danish, French, Greek (Modern), Macedonian, Norwegian (Bokmål), Portuguese, Russian, Spanish, and Ukrainian part-of-speech taggers
diff --git a/doc/doc.md b/doc/doc.md
index ed494b28c..6abc872e3 100644
--- a/doc/doc.md
+++ b/doc/doc.md
@@ -38,7 +38,7 @@
- [4.3 Supported File Encodings](#doc-4-3)
- [4.4 Supported Measures](#doc-4-4)
- [4.4.1 Readability Formulas](#doc-4-4-1)
- - [4.4.2 Indicators of Lexical Diversity](#doc-4-4-2)
+ - [4.4.2 Indicators of Lexical Density/Diversity](#doc-4-4-2)
- [4.4.3 Measures of Dispersion and Adjusted Frequency](#doc-4-4-3)
- [4.4.4 Tests of Statistical Significance, Measures of Bayes Factor, and Measures of Effect Size](#doc-4-4-4)
- [5 References](#doc-5)
@@ -113,7 +113,7 @@ By default, *Wordless* tries to detect the encoding and language settings of all
In *Profiler*, you can check and compare general linguistic features of different files.
-All statistics are grouped into 5 tables for better readability: Readability, Counts, Lexical Diversity, Lengths, Length Breakdown.
+All statistics are grouped into 5 tables for better readability: Readability, Counts, Lexical Density/Diversity, Lengths, Length Breakdown.
- **3.1.1 Readability**
Readability statistics of each file calculated according to the different readability tests used. See section [4.4.1 Readability Formulas](#doc-4-4-1) for more details.
@@ -163,8 +163,8 @@ All statistics are grouped into 5 tables for better readability: Readability, Co
- **3.1.2.14 Count of Characters %**
The percentage of the number of characters in each file out of the total number of characters in all files.
-- **3.1.3 Lexical Diversity**
- Statistics of lexical diversity which reflect the the extend to which the vocabulary used in each file varies. See section [4.4.2 Indicators of Lexical Diversity](#doc-4-4-2) for more details.
+- **3.1.3 Lexical Density/Diversity**
+ Statistics of lexical density/diversity which reflect the the extend to which the vocabulary used in each file varies. See section [4.4.2 Indicators of Lexical Density/Diversity](#doc-4-4-2) for more details.
- **3.1.4 Lengths**
- **3.1.4.1 Paragraph Length in Sentences / Sentence Segments / Tokens (Mean)**
@@ -908,10 +908,10 @@ It should be noted that some readability measures are **language-specific**, or
The following variables would be used in formulas:
**NumSentences**: Number of sentences
**NumWords**: Number of words
-**NumWords1Syl**: Number of monosyllabic words
-**NumWordsn+Syls**: Number of words with n or more syllables
-**NumWordsn+Ltrs**: Number of words with n or more letters
-**NumWordsn-Ltrs**: Number of words with n or less letters
+**NumWordsSyl₁**: Number of monosyllabic words
+**NumWordsSylsₙ₊**: Number of words with n or more syllables
+**NumWordsLtrsₙ₊**: Number of words with n or more letters
+**NumWordsLtrsₙ₋**: Number of words with n or fewer letters
**NumConjs**: Number of conjunctions
**NumPreps**: Number of prepositions
**NumProns**: Number of pronouns
@@ -959,10 +959,10 @@ Coleman-Liau Index:
Coleman's Readability Formula:
\begin{align*}
- \text{Cloze \; %}_1 &= 1.29 \times \left(\frac{\text{NumWords1Syl}}{\text{NumWords}} \times 100\right) - 38.45 \\
- \text{Cloze \; %}_2 &= 1.16 \times \left(\frac{\text{NumWords1Syl}}{\text{NumWords}} \times 100\right) + 1.48 \times \left(\frac{\text{NumSentences}}{\text{NumWords}} \times 100\right) - 37.95 \\
- \text{Cloze \; %}_3 &= 1.07 \times \left(\frac{\text{NumWords1Syl}}{\text{NumWords}} \times 100\right) + 1.18 \times \left(\frac{\text{NumSentences}}{\text{NumWords}} \times 100\right) + 0.76 \times \left(\frac{\text{NumProns}}{\text{NumWords}} \times 100\right) - 34.02 \\
- \text{Cloze \; %}_4 &= 1.04 \times \left(\frac{\text{NumWords1Syl}}{\text{NumWords}} \times 100\right) + 1.06 \times \left(\frac{\text{NumSentences}}{\text{NumWords}} \times 100\right) + 0.56 \times \left(\frac{\text{NumProns}}{\text{NumWords}} \times 100\right) - 0.36 \times \left(\frac{\text{NumPreps}}{\text{NumWords}} \times 100\right) - 26.01
+ \text{Cloze \; %}_1 &= 1.29 \times \left(\frac{\text{NumWordsSyl}_1}{\text{NumWords}} \times 100\right) - 38.45 \\
+ \text{Cloze \; %}_2 &= 1.16 \times \left(\frac{\text{NumWordsSyl}_1}{\text{NumWords}} \times 100\right) + 1.48 \times \left(\frac{\text{NumSentences}}{\text{NumWords}} \times 100\right) - 37.95 \\
+ \text{Cloze \; %}_3 &= 1.07 \times \left(\frac{\text{NumWordsSyl}_1}{\text{NumWords}} \times 100\right) + 1.18 \times \left(\frac{\text{NumSentences}}{\text{NumWords}} \times 100\right) + 0.76 \times \left(\frac{\text{NumProns}}{\text{NumWords}} \times 100\right) - 34.02 \\
+ \text{Cloze \; %}_4 &= 1.04 \times \left(\frac{\text{NumWordsSyl}_1}{\text{NumWords}} \times 100\right) + 1.06 \times \left(\frac{\text{NumSentences}}{\text{NumWords}} \times 100\right) + 0.56 \times \left(\frac{\text{NumProns}}{\text{NumWords}} \times 100\right) - 0.36 \times \left(\frac{\text{NumPreps}}{\text{NumWords}} \times 100\right) - 26.01
\end{align*}
Dale-Chall Readability Formula:
@@ -1014,12 +1014,12 @@ Flesch Reading Ease:
Flesch Reading Ease (Farr-Jenkins-Paterson):
\begin{align*}
- \text{RE} &= 1.599 \times \left(\frac{\text{NumWords1Syl}}{\text{NumWords}} \times 100\right) - 1.015 \times \frac{\text{NumWords}}{\text{NumSentences}} - 31.517 \\
- \text{RE}_\text{Farr-Jenkins-Paterson} &= 8.4335 - 0.0648 \times \left(\frac{\text{NumWords1Syl}}{\text{NumWords}} \times 100\right) + 0.0923 \times \frac{\text{NumWords}}{\text{NumSentences}}
+ \text{RE} &= 1.599 \times \left(\frac{\text{NumWordsSyl}_1}{\text{NumWords}} \times 100\right) - 1.015 \times \frac{\text{NumWords}}{\text{NumSentences}} - 31.517 \\
+ \text{RE}_\text{Farr-Jenkins-Paterson} &= 8.4335 - 0.0648 \times \left(\frac{\text{NumWordsSyl}_1}{\text{NumWords}} \times 100\right) + 0.0923 \times \frac{\text{NumWords}}{\text{NumSentences}}
\end{align*}
FORCAST Grade Level:
- \text{RGL} = 20.43 - 0.11 \times \text{NumWords1Syl}
+ \text{RGL} = 20.43 - 0.11 \times \text{NumWordsSyl}_1
Fórmula de comprensibilidad de Gutiérrez de Polini:
\text{CP} = 95.2 - 9.7 \times \frac{\text{NumCharsAlpha}}{\text{NumWords}} - 0.35 \times \frac{\text{NumWords}}{\text{NumSentences}}
@@ -1037,7 +1037,7 @@ Gunning Fog Index:
\begin{align*}
\text{Fog Index} &= 0.4 \times \left(\frac{\text{NumWords}}{\text{NumSentences}} + \frac{\text{NumHardWords}}{\text{NumWords}} \times 100\right) \\
\text{Fog Index}_\text{Powers-Sumner-Kearl} &= 3.0680 + 0.0877 \times \frac{\text{NumWords}}{\text{NumSentences}} + 0.0984 \times \left(\frac{\text{NumHardWords}}{\text{NumWords}} \times 100\right) \\
- \text{Fog Index}_\text{Navy} &= \frac{\frac{\text{NumWords} + 2 \times \text{NumWords3+Syls}}{\text{NumSentences}} - 3}{2} \\
+ \text{Fog Index}_\text{Navy} &= \frac{\frac{\text{NumWords} + 2 \times \text{NumWordsSyls}_{3+}}{\text{NumSentences}} - 3}{2} \\
\text{Fog Index}_\text{Polish} &= \frac{\sqrt{\left(\frac{\text{NumWords}}{\text{NumSentences}}\right)^2 + \left(\frac{\text{NumHardWords}}{\text{NumWords}} \times 100\right)^2}}{2}
\end{align*}
@@ -1045,10 +1045,10 @@ Legibilidad µ:
\mu = \frac{\text{NumWords}}{\text{NumWords} - 1} \times \frac{\text{LenWordsAvg}}{\text{LenWordsVar}} \times 100
Lensear Write:
- \text{Score} = \text{NumWords1Syl} + 3 \times \text{NumSentences}
+ \text{Score} = \text{NumWordsSyl}_1 + 3 \times \text{NumSentences}
Lix:
- \text{Lix} = \frac{\text{NumWords}}{\text{NumSentences}} + 100 \times \frac{\text{NumWords7+Ltrs}}{\text{NumWords}}
+ \text{Lix} = \frac{\text{NumWords}}{\text{NumSentences}} + 100 \times \frac{\text{NumWordsLtrs}_{7+}}{\text{NumWords}}
Lorge Readability Index:
\begin{align*}
@@ -1060,13 +1060,13 @@ Luong-Nguyen-Dinh's Readability Formula:
{\text{Readability} = 0.004 \times \frac{\text{NumCharsAlnum}}{\text{NumSentences}} + 0.1905 \times \frac{\text{NumCharsAlnum}}{\text{NumWords}} + 2.7147 \times \frac{\text{NumSylsLuongNguyenDinh}_\text{1000}}{\text{NumSyls}} - 0.7295}
McAlpine EFLAW Readability Score:
- \text{EFLAW} = \frac{\text{NumWords} + \text{NumWords3-Ltrs}}{\text{NumSentences}}
+ \text{EFLAW} = \frac{\text{NumWords} + \text{NumWordsLtrs}_{3-}}{\text{NumSentences}}
neue Wiener Literaturformeln:
\begin{align*}
\text{sW} &= \frac{\text{NumWordTypesBambergerVanecek}}{\text{NumWordTypes}} \times 100 \\
- \text{S/100} &= \frac{\text{NumSentences}}{\text{NumWords}} \times 100 \qquad \text{MS} = \frac{\text{NumWords3+Syls}}{\text{NumWords}} \times 100 \\
- \text{SL} &= \frac{\text{NumWords}}{\text{NumSentences}} \qquad \qquad \; \; \; \text{IW} = \frac{\text{NumWords7+Ltrs}}{\text{NumWords}} \times 100 \\
+ \text{S/100} &= \frac{\text{NumSentences}}{\text{NumWords}} \times 100 \qquad \text{MS} = \frac{\text{NumWordsSyls}_{3+}}{\text{NumWords}} \times 100 \\
+ \text{SL} &= \frac{\text{NumWords}}{\text{NumSentences}} \qquad \qquad \; \; \; \text{IW} = \frac{\text{NumWordsLtrs}_{7+}}{\text{NumWords}} \times 100 \\
\text{nWL}_1 &= 0.2032 \times \text{sW} - 0.1715 \times \text{S/100} + 0.1594 \times \text{MS} - 0.0746 \times \text{SL} - 0.145 \\
\text{nWL}_2 &= 0.2081 \times \text{sW} - 0.207 \times \text{S/100} + 0.1772 \times \text{MS} + 0.7498 \\
\text{nWL}_3 &= 0.2373 \times \text{MS} + 0.2433 \times \text{SL} + 0.1508 \times \text{IW} - 3.9203
@@ -1074,23 +1074,23 @@ neue Wiener Literaturformeln:
neue Wiener Sachtextformel:
\begin{align*}
- \text{MS} &= \frac{\text{NumWords3+Syls}}{\text{NumWords}} \times 100 \qquad \text{SL} = \frac{\text{NumWords}}{\text{NumSentences}} \\
- \text{IW} &= \frac{\text{NumWords7+Ltrs}}{\text{NumWords}} \times 100 \qquad \text{ES} = \frac{\text{NumWords1Syl}}{\text{NumWords}} \times 100 \\
+ \text{MS} &= \frac{\text{NumWordsSyls}_{3+}}{\text{NumWords}} \times 100 \qquad \text{SL} = \frac{\text{NumWords}}{\text{NumSentences}} \\
+ \text{IW} &= \frac{\text{NumWordsLtrs}_{7+}}{\text{NumWords}} \times 100 \qquad \text{ES} = \frac{\text{NumWordsSyl}_1}{\text{NumWords}} \times 100 \\
\text{nWS}_1 &= 0.1935 \times \text{MS} + 0.1672 \times \text{SL} + 0.1297 \times \text{IW} - 0.0327 \times \text{ES} - 0.875 \\
\text{nWS}_2 &= 0.2007 \times \text{MS} + 0.1682 \times \text{SL} + 0.1373 \times \text{IW} - 2.779 \\
\text{nWS}_3 &= 0.2963 \times \text{MS} + 0.1905 \times \text{SL} - 1.1144
\end{align*}
OSMAN:
- \text{OSMAN} = 200.791 - 1.015 \times \frac{\text{NumWords}}{\text{NumSentences}} - 24.181 \times \frac{\text{NumWords6+Ltrs} + \text{NumSyls} + \text{NumWords5+Syls} + \text{NumFaseehWords}}{\text{NumWords}}
+ \text{OSMAN} = 200.791 - 1.015 \times \frac{\text{NumWords}}{\text{NumSentences}} - 24.181 \times \frac{\text{NumWordsLtrs}_{6+} + \text{NumSyls} + \text{NumWordsSyls}_{5+} + \text{NumFaseehWords}}{\text{NumWords}}
Rix:
- \text{Rix} = \frac{\text{NumWords7+Ltrs}}{\text{NumSentences}}
+ \text{Rix} = \frac{\text{NumWordsLtrs}_{7+}}{\text{NumSentences}}
SMOG Grade:
\begin{align*}
- \text{g} &= 3.1291 + 1.043 \times \sqrt{\text{NumWords3+Syls}} \\
- \text{g}_\text{German} &= \sqrt{\frac{\text{NumWords3+Syl}}{\text{NumSentences}} \times 30} - 2
+ \text{g} &= 3.1291 + 1.043 \times \sqrt{\text{NumWordsSyls}_{3+}} \\
+ \text{g}_\text{German} &= \sqrt{\frac{\text{NumWordsSyl}_{3+}}{\text{NumSentences}} \times 30} - 2
\end{align*}
Spache Grade Level:
@@ -1112,7 +1112,7 @@ Tuldava's Text Difficulty:
\text{TD} = \frac{\text{NumSyls}}{\text{NumWords}} \times \ln \frac{\text{NumWords}}{\text{NumSentences}}
Wheeler & Smith's Readability Formula:
- \text{Wheeler-Smith} = \frac{\text{NumWords}}{\text{NumUnits}} \times \frac{\text{NumWords2+Syls}}{\text{NumWords}} \times 10
+ \text{Wheeler-Smith} = \frac{\text{NumWords}}{\text{NumUnits}} \times \frac{\text{NumWordsSyls}_{2+}}{\text{NumWords}} \times 10
-->
Readability Formula|Formula|Supported Languages
@@ -1162,8 +1162,8 @@ Readability Formula|Formula|Supported Languages
> 1. Requires **built-in part-of-speech tagging support**
-#### [4.4.2 Indicators of Lexical Diversity](#doc)
-Lexical diversity is the measurement of the extent to which the vocabulary used in the text varies.
+#### [4.4.2 Indicators of Lexical Density/Diversity](#doc)
+Lexical density/diversity is the measurement of the extent to which the vocabulary used in the text varies.
The following variables would be used in formulas:
**fᵢ**: Frequency of the i-th token type ranked descendingly by frequencies
@@ -1185,9 +1185,12 @@ Fisher's Index of Diversity:
Herdan's Vₘ:
\text{V}_\text{m} = \frac{\sum_{f = 1}^{\text{f}_\text{max}}(\text{NumTypes}_f \times f^2)}{\text{NumTokens}^2} - \frac{1}{\text{NumTypes}}
-Honoré's statistic:
+Honoré's Statistic:
\text{R} = 100 \times \ln\frac{\text{NumTokens}}{1 - \frac{\text{NumTypes}_1}{\text{NumTypes}}
+Lexical Density:
+ \text{Lexical Density} = \frac{\text{NumContentWords}}{\text{NumTokens}}
+
LogTTR:
\begin{align*}
\text{LogTTR}_\text{Herdan} &= \frac{\ln{\text{NumTypes}}}{\ln{\text{NumTokens}}} \\
@@ -1243,34 +1246,35 @@ Yule's Index of Diversity:
\text{Index of Diversity} = \frac{\text{NumTokens}^2}{\sum_{f = 1}^{\text{f}_\text{max}}(\text{NumTypes}_f \times f^2) - \text{NumTokens}}
-->
-Indicator of Lexical Diversity|Formula
-------------------------------|-------
- Brunét's Index ([Brunét, 1978](#ref-brunet-1978))|![Formula](/doc/measures/lexical_diversity/brunets_index.svg)
- Corrected TTR ([Carroll, 1964](#ref-carroll-1964))|![Formula](/doc/measures/lexical_diversity/cttr.svg)
- Fisher's Index of Diversity ([Fisher et al., 1943](#ref-fisher-et-al-1943))|![Formula](/doc/measures/lexical_diversity/fishers_index_of_diversity.svg) where W₋₁ is the -1 branch of the [Lambert W function](https://en.wikipedia.org/wiki/Lambert_W_function)
- Herdan's Vₘ ([Herdan, 1955](#ref-herdan-1955))|![Formula](/doc/measures/lexical_diversity/herdans_vm.svg)
- HD-D ([McCarthy & Jarvis, 2010](#ref-mccarthy-jarvis-2010))|For detailed calculation procedures, see reference. The sample size could be modified via **Menu Bar → Preferences → Settings → Measures → Lexical Diversity → HD-D → Sample size**.
- Honoré's statistic ([Honoré, 1979](#ref-honore-1979))|![Formula](/doc/measures/lexical_diversity/honores_stat.svg)
- LogTTR¹ (Herdan: [Herdan, 1960, p. 28](#ref-herdan-1960) Somers: [Somers, 1966](#ref-somers-1966) Rubet: [Dugast, 1979](#ref-dugast-1979) Maas: [Maas, 1972](#ref-maas-1972) Dugast: [Dugast, 1978](#ref-dugast-1978); [Dugast, 1979](#ref-dugast-1979))|![Formula](/doc/measures/lexical_diversity/logttr.svg)
- Mean Segmental TTR ([Johnson, 1944](#ref-johnson-1944))|![Formula](/doc/measures/lexical_diversity/msttr.svg) where **n** is the number of equal-sized segment, the length of which could be modified via **Menu Bar → Preferences → Settings → Measures → Lexical Diversity → Mean Segmental TTR → Number of tokens in each segment**, **NumTypesSegᵢ** is the number of token types in the **i**-th segment, and **NumTokensSegᵢ** is the number of tokens in the **i**-th segment.
- Measure of Textual Lexical Diversity ([McCarthy, 2005, pp. 95–96, 99–100](#ref-mccarthy-2005); [McCarthy & Jarvis, 2010](#ref-mccarthy-jarvis-2010))|For detailed calculation procedures, see references. The factor size could be modified via **Menu Bar → Preferences → Settings → Measures → Lexical Diversity → Measure of Textual Lexical Diversity → Factor size**.
- Moving-average TTR ([Covington & McFall, 2010](#ref-covington-mcfall-2010))|![Formula](/doc/measures/lexical_diversity/mattr.svg) where **w** is the window size which could be modified via **Menu Bar → Preferences → Settings → Measures → Lexical Diversity → Moving-average TTR → Window size**, **NumTypesWindowₚ** is the number of token types within the moving window starting at position **p**, and **NumTokensWindowₚ** is the number of tokens within the moving window starting at position **p**.
- Popescu-Mačutek-Altmann's B₁/B₂/B₃/B₄/B₅ ([Popescu et al., 2008](#ref-popescu-et-al-2008))|![Formula](/doc/measures/lexical_diversity/popescu_macutek_altmanns_b1_b2_b3_b4_b5.svg)
+Indicator of Lexical Density/Diversity|Formula
+--------------------------------------|-------
+ Brunét's Index ([Brunét, 1978](#ref-brunet-1978))|![Formula](/doc/measures/lexical_density_diversity/brunets_index.svg)
+ Corrected TTR ([Carroll, 1964](#ref-carroll-1964))|![Formula](/doc/measures/lexical_density_diversity/cttr.svg)
+ Fisher's Index of Diversity ([Fisher et al., 1943](#ref-fisher-et-al-1943))|![Formula](/doc/measures/lexical_density_diversity/fishers_index_of_diversity.svg) where W₋₁ is the -1 branch of the [Lambert W function](https://en.wikipedia.org/wiki/Lambert_W_function)
+ Herdan's Vₘ ([Herdan, 1955](#ref-herdan-1955))|![Formula](/doc/measures/lexical_density_diversity/herdans_vm.svg)
+ HD-D ([McCarthy & Jarvis, 2010](#ref-mccarthy-jarvis-2010))|For detailed calculation procedures, see reference. The sample size could be modified via **Menu Bar → Preferences → Settings → Measures → Lexical Density/Diversity → HD-D → Sample size**.
+ Honoré's Statistic ([Honoré, 1979](#ref-honore-1979))|![Formula](/doc/measures/lexical_density_diversity/honores_stat.svg)
+ Lexical Density ([Ure, 1971](#ref-ure-1971))|![Formula](/doc/measures/lexical_density_diversity/lexical_density.svg) where **NumContentWords** is the number of content words. By default, all tokens whose universal part-of-speech tags assigned by built-in part-of-speech taggers are ADJ (adjectives), ADV (adverbs), INTJ (interjections), NOUN (nouns), PROPN (proper nouns), NUM (numerals), VERB (verbs), SYM (symbols), or X (others) are categorized as content words. For some built-in part-of-speech taggers, this behavior could be changed via **Menu Bar → Preferences → Settings → Part-of-speech Tagging → Tagsets → Mapping Settings → Content/Function Words**.
+ LogTTR¹ (Herdan: [Herdan, 1960, p. 28](#ref-herdan-1960) Somers: [Somers, 1966](#ref-somers-1966) Rubet: [Dugast, 1979](#ref-dugast-1979) Maas: [Maas, 1972](#ref-maas-1972) Dugast: [Dugast, 1978](#ref-dugast-1978); [Dugast, 1979](#ref-dugast-1979))|![Formula](/doc/measures/lexical_density_diversity/logttr.svg)
+ Mean Segmental TTR ([Johnson, 1944](#ref-johnson-1944))|![Formula](/doc/measures/lexical_density_diversity/msttr.svg) where **n** is the number of equal-sized segment, the length of which could be modified via **Menu Bar → Preferences → Settings → Measures → Lexical Density/Diversity → Mean Segmental TTR → Number of tokens in each segment**, **NumTypesSegᵢ** is the number of token types in the **i**-th segment, and **NumTokensSegᵢ** is the number of tokens in the **i**-th segment.
+ Measure of Textual Lexical Diversity ([McCarthy, 2005, pp. 95–96, 99–100](#ref-mccarthy-2005); [McCarthy & Jarvis, 2010](#ref-mccarthy-jarvis-2010))|For detailed calculation procedures, see references. The factor size could be modified via **Menu Bar → Preferences → Settings → Measures → Lexical Density/Diversity → Measure of Textual Lexical Diversity → Factor size**.
+ Moving-average TTR ([Covington & McFall, 2010](#ref-covington-mcfall-2010))|![Formula](/doc/measures/lexical_density_diversity/mattr.svg) where **w** is the window size which could be modified via **Menu Bar → Preferences → Settings → Measures → Lexical Density/Diversity → Moving-average TTR → Window size**, **NumTypesWindowₚ** is the number of token types within the moving window starting at position **p**, and **NumTokensWindowₚ** is the number of tokens within the moving window starting at position **p**.
+ Popescu-Mačutek-Altmann's B₁/B₂/B₃/B₄/B₅ ([Popescu et al., 2008](#ref-popescu-et-al-2008))|![Formula](/doc/measures/lexical_density_diversity/popescu_macutek_altmanns_b1_b2_b3_b4_b5.svg)
Popescu's R₁ ([Popescu, 2009, pp. 18, 30, 33](#ref-popescu-2009))|For detailed calculation procedures, see reference.
Popescu's R₂ ([Popescu, 2009, pp. 35–36, 38](#ref-popescu-2009))|For detailed calculation procedures, see reference.
Popescu's R₃ ([Popescu, 2009, pp. 48–49, 53](#ref-popescu-2009))|For detailed calculation procedures, see reference.
Popescu's R₄ ([Popescu, 2009, p. 57](#ref-popescu-2009))|For detailed calculation procedures, see reference.
- Repeat Rate¹ ([Popescu, 2009, p. 166](#ref-popescu-2009))|![Formula](/doc/measures/lexical_diversity/repeat_rate.svg)
- Root TTR ([Guiraud, 1954](#ref-guiraud-1954))|![Formula](/doc/measures/lexical_diversity/rttr.svg)
- Shannon Entropy¹ ([Popescu, 2009, p. 173](#ref-popescu-2009))|![Formula](/doc/measures/lexical_diversity/shannon_entropy.svg)
- Simpson's l ([Simpson, 1949](#ref-simpson-1949))|![Formula](/doc/measures/lexical_diversity/simpsons_l.svg)
- Type-token Ratio ([Johnson, 1944](#ref-johnson-1944))|![Formula](/doc/measures/lexical_diversity/ttr.svg)
+ Repeat Rate¹ ([Popescu, 2009, p. 166](#ref-popescu-2009))|![Formula](/doc/measures/lexical_density_diversity/repeat_rate.svg)
+ Root TTR ([Guiraud, 1954](#ref-guiraud-1954))|![Formula](/doc/measures/lexical_density_diversity/rttr.svg)
+ Shannon Entropy¹ ([Popescu, 2009, p. 173](#ref-popescu-2009))|![Formula](/doc/measures/lexical_density_diversity/shannon_entropy.svg)
+ Simpson's l ([Simpson, 1949](#ref-simpson-1949))|![Formula](/doc/measures/lexical_density_diversity/simpsons_l.svg)
+ Type-token Ratio ([Johnson, 1944](#ref-johnson-1944))|![Formula](/doc/measures/lexical_density_diversity/ttr.svg)
vocd-D ([Malvern et al., 2004, pp. 51, 56–57](#ref-malvern-et-al-2004))|For detailed calculation procedures, see reference.
- Yule's Characteristic K ([Yule, 1944, pp. 52–53](#ref-yule-1944))|![Formula](/doc/measures/lexical_diversity/yules_characteristic_k.svg)
- Yule's Index of Diversity ([Williams, 1970, p. 100](#ref-williams-1970))|![Formula](/doc/measures/lexical_diversity/yules_index_of_diversity.svg)
+ Yule's Characteristic K ([Yule, 1944, pp. 52–53](#ref-yule-1944))|![Formula](/doc/measures/lexical_density_diversity/yules_characteristic_k.svg)
+ Yule's Index of Diversity ([Williams, 1970, p. 100](#ref-williams-1970))|![Formula](/doc/measures/lexical_density_diversity/yules_index_of_diversity.svg)
> [!NOTE]
-> 1. Variants available and can be selected via **Menu Bar → Preferences → Settings → Measures → Lexical Diversity**
+> 1. Variants available and can be selected via **Menu Bar → Preferences → Settings → Measures → Lexical Density/Diversity**
#### [4.4.3 Measures of Dispersion and Adjusted Frequency](#doc)
@@ -1741,6 +1745,8 @@ Linguistic Computing Bulletin*, *7*(2), 172–177.
1. [**^**](#ref-trankle-bailers-readability-formula) Tränkle, U., & Bailer, H. (1984). *Kreuzvalidierung und Neuberechnung von Lesbarkeitsformeln für die Deutsche Sprache* [Cross-validation and recalculation of the readability formulas for the German language]. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, *16*(3), 231–244.
1. [**^**](#ref-td) Tuldava, J. (1975). Ob izmerenii trudnosti tekstov [On measuring the complexity of the text]. *Uchenye zapiski Tartuskogo universiteta. Trudy po metodike prepodavaniya inostrannykh yazykov*, *345*, 102–120.
+
+1. [**^**](#ref-lexical-density) Ure, J. (1971). Lexical density and register differentiation. In G. E. Perren & J. L. M. Trim (Eds.), *Applications of Linguistics* (pp. 443–452). Cambridge University Press.
1. [**^**](#ref-wheeler-smiths-readability-formula) Wheeler, L. R., & Smith, E. H. (1954). A practical readability formula for the classroom teacher in the primary grades. *Elementary English*, *31*(7), 397–399.
diff --git a/doc/measures/lexical_diversity/brunets_index.svg b/doc/measures/lexical_density_diversity/brunets_index.svg
similarity index 100%
rename from doc/measures/lexical_diversity/brunets_index.svg
rename to doc/measures/lexical_density_diversity/brunets_index.svg
diff --git a/doc/measures/lexical_diversity/cttr.svg b/doc/measures/lexical_density_diversity/cttr.svg
similarity index 100%
rename from doc/measures/lexical_diversity/cttr.svg
rename to doc/measures/lexical_density_diversity/cttr.svg
diff --git a/doc/measures/lexical_diversity/fishers_index_of_diversity.svg b/doc/measures/lexical_density_diversity/fishers_index_of_diversity.svg
similarity index 100%
rename from doc/measures/lexical_diversity/fishers_index_of_diversity.svg
rename to doc/measures/lexical_density_diversity/fishers_index_of_diversity.svg
diff --git a/doc/measures/lexical_diversity/herdans_vm.svg b/doc/measures/lexical_density_diversity/herdans_vm.svg
similarity index 100%
rename from doc/measures/lexical_diversity/herdans_vm.svg
rename to doc/measures/lexical_density_diversity/herdans_vm.svg
diff --git a/doc/measures/lexical_diversity/honores_stat.svg b/doc/measures/lexical_density_diversity/honores_stat.svg
similarity index 100%
rename from doc/measures/lexical_diversity/honores_stat.svg
rename to doc/measures/lexical_density_diversity/honores_stat.svg
diff --git a/doc/measures/lexical_density_diversity/lexical_density.svg b/doc/measures/lexical_density_diversity/lexical_density.svg
new file mode 100644
index 000000000..0247ac81b
--- /dev/null
+++ b/doc/measures/lexical_density_diversity/lexical_density.svg
@@ -0,0 +1,71 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/doc/measures/lexical_diversity/logttr.svg b/doc/measures/lexical_density_diversity/logttr.svg
similarity index 100%
rename from doc/measures/lexical_diversity/logttr.svg
rename to doc/measures/lexical_density_diversity/logttr.svg
diff --git a/doc/measures/lexical_diversity/mattr.svg b/doc/measures/lexical_density_diversity/mattr.svg
similarity index 100%
rename from doc/measures/lexical_diversity/mattr.svg
rename to doc/measures/lexical_density_diversity/mattr.svg
diff --git a/doc/measures/lexical_diversity/msttr.svg b/doc/measures/lexical_density_diversity/msttr.svg
similarity index 100%
rename from doc/measures/lexical_diversity/msttr.svg
rename to doc/measures/lexical_density_diversity/msttr.svg
diff --git a/doc/measures/lexical_diversity/popescu_macutek_altmanns_b1_b2_b3_b4_b5.svg b/doc/measures/lexical_density_diversity/popescu_macutek_altmanns_b1_b2_b3_b4_b5.svg
similarity index 100%
rename from doc/measures/lexical_diversity/popescu_macutek_altmanns_b1_b2_b3_b4_b5.svg
rename to doc/measures/lexical_density_diversity/popescu_macutek_altmanns_b1_b2_b3_b4_b5.svg
diff --git a/doc/measures/lexical_diversity/repeat_rate.svg b/doc/measures/lexical_density_diversity/repeat_rate.svg
similarity index 100%
rename from doc/measures/lexical_diversity/repeat_rate.svg
rename to doc/measures/lexical_density_diversity/repeat_rate.svg
diff --git a/doc/measures/lexical_diversity/rttr.svg b/doc/measures/lexical_density_diversity/rttr.svg
similarity index 100%
rename from doc/measures/lexical_diversity/rttr.svg
rename to doc/measures/lexical_density_diversity/rttr.svg
diff --git a/doc/measures/lexical_diversity/shannon_entropy.svg b/doc/measures/lexical_density_diversity/shannon_entropy.svg
similarity index 100%
rename from doc/measures/lexical_diversity/shannon_entropy.svg
rename to doc/measures/lexical_density_diversity/shannon_entropy.svg
diff --git a/doc/measures/lexical_diversity/simpsons_l.svg b/doc/measures/lexical_density_diversity/simpsons_l.svg
similarity index 100%
rename from doc/measures/lexical_diversity/simpsons_l.svg
rename to doc/measures/lexical_density_diversity/simpsons_l.svg
diff --git a/doc/measures/lexical_diversity/ttr.svg b/doc/measures/lexical_density_diversity/ttr.svg
similarity index 100%
rename from doc/measures/lexical_diversity/ttr.svg
rename to doc/measures/lexical_density_diversity/ttr.svg
diff --git a/doc/measures/lexical_diversity/yules_characteristic_k.svg b/doc/measures/lexical_density_diversity/yules_characteristic_k.svg
similarity index 100%
rename from doc/measures/lexical_diversity/yules_characteristic_k.svg
rename to doc/measures/lexical_density_diversity/yules_characteristic_k.svg
diff --git a/doc/measures/lexical_diversity/yules_index_of_diversity.svg b/doc/measures/lexical_density_diversity/yules_index_of_diversity.svg
similarity index 100%
rename from doc/measures/lexical_diversity/yules_index_of_diversity.svg
rename to doc/measures/lexical_density_diversity/yules_index_of_diversity.svg
diff --git a/doc/measures/readability/colemans_readability_formula.svg b/doc/measures/readability/colemans_readability_formula.svg
index 95fbd670c..1f12626a7 100644
--- a/doc/measures/readability/colemans_readability_formula.svg
+++ b/doc/measures/readability/colemans_readability_formula.svg
@@ -1,6 +1,6 @@
-
+
@@ -67,30 +67,30 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
@@ -113,63 +113,63 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
@@ -192,92 +192,92 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
@@ -300,120 +300,120 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/doc/measures/readability/eflaw.svg b/doc/measures/readability/eflaw.svg
index b2573f4c8..18343bf4f 100644
--- a/doc/measures/readability/eflaw.svg
+++ b/doc/measures/readability/eflaw.svg
@@ -1,71 +1,71 @@
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/doc/measures/readability/fog_index.svg b/doc/measures/readability/fog_index.svg
index 0414e079a..aaff50660 100644
--- a/doc/measures/readability/fog_index.svg
+++ b/doc/measures/readability/fog_index.svg
@@ -1,361 +1,362 @@
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
-
+
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
-
-
-
+
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
+
+
+
+
+
+
-
-
-
-
+
+
+
+
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
+
+
+
+
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
-
-
-
+
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/doc/measures/readability/lensear_write.svg b/doc/measures/readability/lensear_write.svg
index 50218bddf..c325e8adf 100644
--- a/doc/measures/readability/lensear_write.svg
+++ b/doc/measures/readability/lensear_write.svg
@@ -1,61 +1,61 @@
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/doc/measures/readability/lix.svg b/doc/measures/readability/lix.svg
index 2303c92ef..eff7ff9e0 100644
--- a/doc/measures/readability/lix.svg
+++ b/doc/measures/readability/lix.svg
@@ -1,83 +1,84 @@
-
+
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/doc/measures/readability/nwl.svg b/doc/measures/readability/nwl.svg
index 0e8a38b54..4c695ad5c 100644
--- a/doc/measures/readability/nwl.svg
+++ b/doc/measures/readability/nwl.svg
@@ -1,11 +1,13 @@
-
+
+
+
@@ -97,40 +99,40 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
@@ -139,215 +141,215 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/doc/measures/readability/nws.svg b/doc/measures/readability/nws.svg
index 50f4bd707..165642c57 100644
--- a/doc/measures/readability/nws.svg
+++ b/doc/measures/readability/nws.svg
@@ -1,13 +1,15 @@
-
+
+
+
+
-
-
+
@@ -41,9 +43,9 @@
-
-
-
+
+
+
@@ -52,227 +54,227 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/doc/measures/readability/osman.svg b/doc/measures/readability/osman.svg
index 69ff7c262..16b70ded8 100644
--- a/doc/measures/readability/osman.svg
+++ b/doc/measures/readability/osman.svg
@@ -1,154 +1,156 @@
-
+
-
+
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/doc/measures/readability/re_farr_jenkins_paterson.svg b/doc/measures/readability/re_farr_jenkins_paterson.svg
index dcfe492da..b57d4991e 100644
--- a/doc/measures/readability/re_farr_jenkins_paterson.svg
+++ b/doc/measures/readability/re_farr_jenkins_paterson.svg
@@ -1,8 +1,9 @@
-
+
+
@@ -69,59 +70,59 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
@@ -169,52 +170,52 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/doc/measures/readability/rgl.svg b/doc/measures/readability/rgl.svg
index 2a6506640..3412fc966 100644
--- a/doc/measures/readability/rgl.svg
+++ b/doc/measures/readability/rgl.svg
@@ -1,58 +1,59 @@
-
+
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
+
+
+
+
+
+
-
-
+
+
-
+
-
-
+
+
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/doc/measures/readability/rix.svg b/doc/measures/readability/rix.svg
index 85a2f7832..4f57258bc 100644
--- a/doc/measures/readability/rix.svg
+++ b/doc/measures/readability/rix.svg
@@ -1,59 +1,59 @@
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/doc/measures/readability/smog_grade.svg b/doc/measures/readability/smog_grade.svg
index b65abd146..0e5811716 100644
--- a/doc/measures/readability/smog_grade.svg
+++ b/doc/measures/readability/smog_grade.svg
@@ -1,7 +1,9 @@
-
+
+
+
@@ -38,7 +40,7 @@
-
+
@@ -54,8 +56,8 @@
-
-
+
+
@@ -64,52 +66,52 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/doc/measures/readability/wheeler_smiths_readability_formula.svg b/doc/measures/readability/wheeler_smiths_readability_formula.svg
index 78bd95583..87a8fb108 100644
--- a/doc/measures/readability/wheeler_smiths_readability_formula.svg
+++ b/doc/measures/readability/wheeler_smiths_readability_formula.svg
@@ -1,90 +1,90 @@
-
+
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/tests/files/file_area/misc/[amh] No language support.txt b/tests/files/file_area/misc/[amh] No language support.txt
new file mode 100644
index 000000000..00aba4d44
--- /dev/null
+++ b/tests/files/file_area/misc/[amh] No language support.txt
@@ -0,0 +1 @@
+አማርኛ[1] ፡ የኢትዮጵያ ፡ መደበኛ ፡ ቋንቋ ፡ ነው ። ከሴማዊ ፡ ቋንቋዎች ፡ እንደ ፡ ዕብራይስጥ ፡ ወይም ፡ ዓረብኛ ፡ አንዱ ፡ ነው። በአፍሪካ ፡ ውስጥ ፡ ደግሞ ፡ ከምዕራብ ፡ አፍሪካው ፡ ሐውሳና ፡ ከምሥራቅ ፡ አፍሪካው ፡ ስዋሂሊ ፡ ቀጥሎ ፡ 3ኛውን ፡ ቦታ ፡ የያዘ ፡ ነው።[1] እንዲያውም ፡ 85.6 ፡ ሚሊዮን ፡ ያህል ፡ ተናጋሪዎች ፡ እያሉት ፣ አማርኛ ፡ ከአረብኛ ፡ ቀጥሎ ፡ ትልቁ ፡ ሴማዊ ፡ ቋንቋ ፡ ነው። የሚጻፈውም ፡ በአማርኛ ፡ ፊደል ፡ ነው። አማርኛ ፡ ከዓረብኛና ፡ ከዕብራይስጥ ፡ ያለው ፡ መሰረታዊ ፡ ልዩነት ፡ እንደ ፡ ላቲን ፡ ከግራ ፡ ወደ ፡ ቀኝ ፡ መጻፉ ፡ ነው።
diff --git a/tests/files/file_area/misc/[eng_us] 1st_token_is_punc_mark.txt b/tests/files/file_area/misc/[eng_us] First token is a punctuation mark.txt
similarity index 100%
rename from tests/files/file_area/misc/[eng_us] 1st_token_is_punc_mark.txt
rename to tests/files/file_area/misc/[eng_us] First token is a punctuation mark.txt
diff --git a/tests/test_colligation_extractor.py b/tests/test_colligation_extractor.py
index 9ac6ba4d4..7bc75e198 100644
--- a/tests/test_colligation_extractor.py
+++ b/tests/test_colligation_extractor.py
@@ -16,6 +16,7 @@
# along with this program. If not, see .
# ----------------------------------------------------------------------
+import glob
import random
from tests import wl_test_init
@@ -42,7 +43,7 @@ def test_colligation_extractor():
]
measures_effect_size = list(main.settings_global['measures_effect_size'].keys())
- for i in range(4):
+ for i in range(2 + len(glob.glob('tests/files/file_area/misc/*.txt'))):
match i:
# Single file
case 0:
@@ -52,7 +53,11 @@ def test_colligation_extractor():
wl_test_init.select_test_files(main, no_files = [1, 2])
# Miscellaneous
case _:
- wl_test_init.select_test_files(main, no_files = [i + 1])
+ # Excluding files without POS tagging support
+ if main.settings_custom['file_area']['files_open'][i + 1]['lang'] == 'eng_us':
+ wl_test_init.select_test_files(main, no_files = [i + 1])
+ else:
+ continue
settings['generation_settings']['test_statistical_significance'] = random.choice(tests_statistical_significance)
settings['generation_settings']['measure_bayes_factor'] = random.choice(measures_bayes_factor)
diff --git a/tests/test_collocation_extractor.py b/tests/test_collocation_extractor.py
index fbf7dd0b6..90bc79fb5 100644
--- a/tests/test_collocation_extractor.py
+++ b/tests/test_collocation_extractor.py
@@ -16,6 +16,7 @@
# along with this program. If not, see .
# ----------------------------------------------------------------------
+import glob
import random
from tests import wl_test_init
@@ -42,7 +43,7 @@ def test_collocation_extractor():
]
measures_effect_size = list(main.settings_global['measures_effect_size'].keys())
- for i in range(4):
+ for i in range(2 + len(glob.glob('tests/files/file_area/misc/*.txt'))):
match i:
# Single file
case 0:
diff --git a/tests/test_concordancer.py b/tests/test_concordancer.py
index b0ed01fcf..0220239f4 100644
--- a/tests/test_concordancer.py
+++ b/tests/test_concordancer.py
@@ -16,6 +16,8 @@
# along with this program. If not, see .
# ----------------------------------------------------------------------
+import glob
+
from tests import wl_test_init
from wordless import wl_concordancer
from wordless.wl_dialogs import wl_dialogs_misc
@@ -30,7 +32,7 @@ def test_concordancer():
settings['search_settings']['multi_search_mode'] = True
settings['search_settings']['search_terms'] = wl_test_init.SEARCH_TERMS
- for i in range(4):
+ for i in range(2 + len(glob.glob('tests/files/file_area/misc/*.txt'))):
match i:
# Single file
case 0:
diff --git a/tests/test_concordancer_parallel.py b/tests/test_concordancer_parallel.py
index 10f23e696..ba25d7228 100644
--- a/tests/test_concordancer_parallel.py
+++ b/tests/test_concordancer_parallel.py
@@ -16,6 +16,8 @@
# along with this program. If not, see .
# ----------------------------------------------------------------------
+import glob
+
from tests import wl_test_init
from wordless import wl_concordancer_parallel
from wordless.wl_dialogs import wl_dialogs_misc
@@ -33,7 +35,10 @@ def test_concordancer_parallel():
case 0:
wl_test_init.select_test_files(main, no_files = [0, 1, 2])
case 1:
- wl_test_init.select_test_files(main, no_files = [1, 2, 3, 4])
+ wl_test_init.select_test_files(
+ main,
+ no_files = list(range(1, 3 + len(glob.glob('tests/files/file_area/misc/*.txt'))))
+ )
print(f"Files: {' | '.join(wl_test_init.get_test_file_names(main))}")
diff --git a/tests/test_dependency_parser.py b/tests/test_dependency_parser.py
index 4da0b757e..c971070af 100644
--- a/tests/test_dependency_parser.py
+++ b/tests/test_dependency_parser.py
@@ -16,6 +16,8 @@
# along with this program. If not, see .
# ----------------------------------------------------------------------
+import glob
+
from tests import wl_test_init
from wordless import wl_dependency_parser
from wordless.wl_dialogs import wl_dialogs_misc
@@ -30,7 +32,7 @@ def test_dependency_parser():
settings['search_settings']['multi_search_mode'] = True
settings['search_settings']['search_terms'] = wl_test_init.SEARCH_TERMS
- for i in range(4):
+ for i in range(2 + len(glob.glob('tests/files/file_area/misc/*.txt'))):
match i:
# Single file
case 0:
@@ -40,7 +42,11 @@ def test_dependency_parser():
wl_test_init.select_test_files(main, no_files = [1, 2])
# Miscellaneous
case _:
- wl_test_init.select_test_files(main, no_files = [i + 1])
+ # Excluding files without dependency parsing support
+ if main.settings_custom['file_area']['files_open'][i + 1]['lang'] == 'eng_us':
+ wl_test_init.select_test_files(main, no_files = [i + 1])
+ else:
+ continue
global main_global
main_global = main
diff --git a/tests/test_keyword_extractor.py b/tests/test_keyword_extractor.py
index 7d431bbc1..802512301 100644
--- a/tests/test_keyword_extractor.py
+++ b/tests/test_keyword_extractor.py
@@ -16,6 +16,7 @@
# along with this program. If not, see .
# ----------------------------------------------------------------------
+import glob
import random
from tests import wl_test_init
@@ -39,7 +40,7 @@ def test_keyword_extractor():
]
measures_effect_size = list(main.settings_global['measures_effect_size'].keys())
- for i in range(6):
+ for i in range(4 + len(glob.glob('tests/files/file_area/misc/*.txt'))):
match i:
# Single observed file & single reference file
case 0:
diff --git a/tests/test_ngram_generator.py b/tests/test_ngram_generator.py
index f84d85f8b..349b4e6c5 100644
--- a/tests/test_ngram_generator.py
+++ b/tests/test_ngram_generator.py
@@ -16,6 +16,7 @@
# along with this program. If not, see .
# ----------------------------------------------------------------------
+import glob
import random
from tests import wl_test_init
@@ -35,7 +36,7 @@ def test_ngram_generator():
measures_dispersion = list(main.settings_global['measures_dispersion'])
measures_adjusted_freq = list(main.settings_global['measures_adjusted_freq'])
- for i in range(4):
+ for i in range(2 + len(glob.glob('tests/files/file_area/misc/*.txt'))):
match i:
# Single file
case 0:
diff --git a/tests/test_profiler.py b/tests/test_profiler.py
index cca98ad2b..370fa2acc 100644
--- a/tests/test_profiler.py
+++ b/tests/test_profiler.py
@@ -17,7 +17,7 @@
# ----------------------------------------------------------------------
import collections
-import re
+import glob
import numpy
import scipy
@@ -27,12 +27,10 @@
from wordless.wl_dialogs import wl_dialogs_misc
from wordless.wl_utils import wl_misc
-main_global = None
-
def test_profiler():
main = wl_test_init.Wl_Test_Main(switch_lang_utils = 'fast')
- for i in range(4):
+ for i in range(2 + len(glob.glob('tests/files/file_area/misc/*.txt'))):
match i:
# Single file
case 0:
@@ -44,9 +42,6 @@ def test_profiler():
case _:
wl_test_init.select_test_files(main, no_files = [i + 1])
- global main_global
- main_global = main
-
print(f"Files: {' | '.join(wl_test_init.get_test_file_names(main))}")
wl_profiler.Wl_Worker_Profiler_Table(
@@ -67,8 +62,6 @@ def update_gui(err_msg, texts_stats_files):
count_tokens_lens_syls = []
count_tokens_lens_chars = []
- files = main_global.settings_custom['file_area']['files_open']
-
for i, stats in enumerate(texts_stats_files):
stats_readability = stats[0]
len_paras_sentences = numpy.array(stats[1])
@@ -76,35 +69,37 @@ def update_gui(err_msg, texts_stats_files):
len_paras_tokens = numpy.array(stats[3])
len_sentences = numpy.array(stats[4])
len_sentence_segs = numpy.array(stats[5])
- len_tokens_syls = numpy.array(stats[6])
+ len_tokens_syls = numpy.array(stats[6]) if stats[6] is not None else None
len_tokens_chars = numpy.array(stats[7])
- len_types_syls = numpy.array(stats[8])
+ len_types_syls = numpy.array(stats[8]) if stats[8] is not None else None
len_types_chars = numpy.array(stats[9])
- len_syls = numpy.array(stats[10])
- stats_lexical_diversity = stats[11]
+ len_syls = numpy.array(stats[10]) if stats[10] is not None else None
+ stats_lexical_density_diversity = stats[11]
count_paras = len(len_paras_sentences)
count_sentences = len(len_sentences)
count_sentence_segs = len(len_sentence_segs)
count_tokens = len(len_tokens_chars)
count_types = len(len_types_chars)
- count_syls = len(len_syls)
+ count_syls = len(len_syls) if len_syls is not None else None
count_chars = numpy.sum(len_tokens_chars)
count_sentences_lens.append(collections.Counter(len_sentences))
count_sentence_segs_lens.append(collections.Counter(len_sentence_segs))
- count_tokens_lens_syls.append(collections.Counter(len_tokens_syls))
+ count_tokens_lens_syls.append(
+ collections.Counter(len_tokens_syls) if len_tokens_syls is not None else None
+ )
count_tokens_lens_chars.append(collections.Counter(len_tokens_chars))
assert len(stats_readability) == 39
- for i, readability in enumerate(stats_readability):
+ for stat in stats_readability:
assert (
(
- type(readability) in [int, float, numpy.float64]
- and not numpy.isnan(readability)
+ type(stat) in [int, float, numpy.float64]
+ and not numpy.isnan(stat)
)
- or readability in ['text_too_short', 'no_support']
+ or stat in ['text_too_short', 'no_support']
)
# Counts
@@ -113,35 +108,35 @@ def update_gui(err_msg, texts_stats_files):
assert count_sentence_segs
assert count_tokens
assert count_types
- assert count_syls
assert count_chars
+ if count_syls is not None:
+ assert count_syls
+
# Lengths
assert len_paras_sentences.size
assert len_paras_sentence_segs.size
assert len_paras_tokens.size
assert len_sentences.size
assert len_sentence_segs.size
- assert len_tokens_syls.size
assert len_tokens_chars.size
- assert len_types_syls.size
assert len_types_chars.size
- assert len_syls.size
- if i < len(files):
- lang = re.search(r'(?<=\[)[a-z_]+(?=\])', files[i]['name']).group()
-
- if lang not in main_global.settings_global['syl_tokenizers']:
- assert all((len_syls == 1 for len_syls in len_tokens_syls))
- assert all((len_syls == 1 for len_syls in len_types_syls))
+ if len_syls is not None:
+ assert len_tokens_syls.size
+ assert len_types_syls.size
+ assert len_syls.size
# Lexical Diversity
- assert len(stats_lexical_diversity) == 27
+ assert len(stats_lexical_density_diversity) == 28
- for i, lexical_diversity in enumerate(stats_lexical_diversity):
+ for stat in stats_lexical_density_diversity:
assert (
- not numpy.isnan(lexical_diversity)
- and type(lexical_diversity) in [int, float, numpy.float64]
+ (
+ type(stat) in [int, float, numpy.float64]
+ and not numpy.isnan(stat)
+ )
+ or stat == 'no_support'
)
# Mean
@@ -150,9 +145,11 @@ def update_gui(err_msg, texts_stats_files):
assert numpy.mean(len_paras_tokens) == count_tokens / count_paras
assert numpy.mean(len_sentences) == count_tokens / count_sentences
assert numpy.mean(len_sentence_segs) == count_tokens / count_sentence_segs
- assert numpy.mean(len_tokens_syls) == count_syls / count_tokens
assert numpy.mean(len_tokens_chars) == count_chars / count_tokens
+ if count_syls is not None:
+ assert numpy.mean(len_tokens_syls) == count_syls / count_tokens
+
# Range and interquartile range
for lens in [
len_paras_sentences,
@@ -163,8 +160,9 @@ def update_gui(err_msg, texts_stats_files):
len_tokens_syls,
len_tokens_chars
]:
- assert numpy.ptp(lens) == max(lens) - min(lens)
- assert scipy.stats.iqr(lens) == numpy.percentile(lens, 75) - numpy.percentile(lens, 25)
+ if lens is not None:
+ assert numpy.ptp(lens) == max(lens) - min(lens)
+ assert scipy.stats.iqr(lens) == numpy.percentile(lens, 75) - numpy.percentile(lens, 25)
# Count of n-token-long Sentences
if any(count_sentences_lens):
@@ -201,7 +199,7 @@ def update_gui(err_msg, texts_stats_files):
assert 0 not in count_sentence_segs_lens
# Count of n-syllable-long Tokens
- if any(count_tokens_lens_syls):
+ if len_tokens_syls is not None:
count_tokens_lens_files = wl_misc.merge_dicts(count_tokens_lens_syls)
count_tokens_lens_syls = sorted(count_tokens_lens_files.keys())
diff --git a/tests/test_wordlist_generator.py b/tests/test_wordlist_generator.py
index 58aa0055b..6b6b38a4e 100644
--- a/tests/test_wordlist_generator.py
+++ b/tests/test_wordlist_generator.py
@@ -16,6 +16,7 @@
# along with this program. If not, see .
# ----------------------------------------------------------------------
+import glob
import random
from tests import wl_test_init
@@ -32,7 +33,7 @@ def test_wordlist_generator():
measures_dispersion = list(main.settings_global['measures_dispersion'].keys())
measures_adjusted_freq = list(main.settings_global['measures_adjusted_freq'].keys())
- for i in range(4):
+ for i in range(2 + len(glob.glob('tests/files/file_area/misc/*.txt'))):
match i:
# Single file
case 0:
diff --git a/tests/tests_measures/test_measures_lexical_diversity.py b/tests/tests_measures/test_measures_lexical_density_diversity.py
similarity index 61%
rename from tests/tests_measures/test_measures_lexical_diversity.py
rename to tests/tests_measures/test_measures_lexical_density_diversity.py
index b2d63d1f3..a64edf280 100644
--- a/tests/tests_measures/test_measures_lexical_diversity.py
+++ b/tests/tests_measures/test_measures_lexical_density_diversity.py
@@ -1,5 +1,5 @@
# ----------------------------------------------------------------------
-# Wordless: Tests - Measures - Lexical diversity
+# Wordless: Tests - Measures - Lexical density/diversity
# Copyright (C) 2018-2024 Ye Lei (叶磊)
#
# This program is free software: you can redistribute it and/or modify
@@ -20,10 +20,10 @@
import scipy
from tests import wl_test_init
-from wordless.wl_measures import wl_measures_lexical_diversity
+from wordless.wl_measures import wl_measures_lexical_density_diversity
main = wl_test_init.Wl_Test_Main()
-settings = main.settings_custom['measures']['lexical_diversity']
+settings = main.settings_custom['measures']['lexical_density_diversity']
TOKENS_10 = ['This', 'is', 'a', 'sentence', '.'] * 2
TOKENS_100 = ['This', 'is', 'a', 'sentence', '.'] * 20
@@ -33,49 +33,63 @@
# Reference: Popescu, I.-I. (2009). Word frequency studies (p. 26). Mouton de Gruyter.
TOKENS_225 = [1] * 11 + [2, 3] * 9 + [4] * 7 + [5, 6] * 6 + [7, 8] * 5 + list(range(9, 16)) * 4 + list(range(16, 22)) * 3 + list(range(22, 40)) * 2 + list(range(40, 125))
+def get_test_text(tokens):
+ return wl_test_init.Wl_Test_Text(main, [[[tokens]]])
+
+text_tokens_10 = get_test_text(TOKENS_10)
+text_tokens_100 = get_test_text(TOKENS_100)
+text_tokens_101 = get_test_text(TOKENS_101)
+text_tokens_1000 = get_test_text(TOKENS_1000)
+text_tokens_225 = get_test_text(TOKENS_225)
+
def test_brunets_index():
- w = wl_measures_lexical_diversity.brunets_index(main, TOKENS_100)
+ w = wl_measures_lexical_density_diversity.brunets_index(main, text_tokens_100)
assert w == numpy.power(100, numpy.power(5, -0.165))
def test_cttr():
- cttr = wl_measures_lexical_diversity.cttr(main, TOKENS_100)
+ cttr = wl_measures_lexical_density_diversity.cttr(main, text_tokens_100)
assert cttr == 5 / (2 * 100) ** 0.5
# Reference: Fisher, R. A., Steven, A. C., & Williams, C. B. (1943). The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology, 12(1), 56. https://doi.org/10.2307/1411
def test_fishers_index_of_diversity():
tokens = [str(i) for i in range(240)] + ['0'] * (15609 - 240)
- alpha = wl_measures_lexical_diversity.fishers_index_of_diversity(main, tokens)
+ alpha = wl_measures_lexical_density_diversity.fishers_index_of_diversity(main, get_test_text(tokens))
assert round(alpha, 3) == 40.247
def test_herdans_vm():
- vm = wl_measures_lexical_diversity.herdans_vm(main, TOKENS_100)
+ vm = wl_measures_lexical_density_diversity.herdans_vm(main, text_tokens_100)
assert vm == (5 * 20 ** 2) / (100 ** 2) - 1 / 5
def test_hdd():
- hdd_100 = wl_measures_lexical_diversity.hdd(main, TOKENS_100)
+ hdd_100 = wl_measures_lexical_density_diversity.hdd(main, text_tokens_100)
assert hdd_100 == (1 - scipy.stats.hypergeom.pmf(k = 0, M = 100, n = 20, N = 42)) * (1 / 42) * 5
def test_honores_stat():
- r = wl_measures_lexical_diversity.honores_stat(main, TOKENS_100)
+ r = wl_measures_lexical_density_diversity.honores_stat(main, text_tokens_100)
assert r == 100 * numpy.log(100 / (1 - 0 / 5))
+def test_lexical_density():
+ lexical_density = wl_measures_lexical_density_diversity.lexical_density(main, text_tokens_100)
+
+ assert lexical_density == 20 / 100
+
def test_logttr():
settings['logttr']['variant'] = 'Herdan'
- logttr_herdan = wl_measures_lexical_diversity.logttr(main, TOKENS_100)
+ logttr_herdan = wl_measures_lexical_density_diversity.logttr(main, text_tokens_100)
settings['logttr']['variant'] = 'Somers'
- logttr_somers = wl_measures_lexical_diversity.logttr(main, TOKENS_100)
+ logttr_somers = wl_measures_lexical_density_diversity.logttr(main, text_tokens_100)
settings['logttr']['variant'] = 'Rubet'
- logttr_rubet = wl_measures_lexical_diversity.logttr(main, TOKENS_100)
+ logttr_rubet = wl_measures_lexical_density_diversity.logttr(main, text_tokens_100)
settings['logttr']['variant'] = 'Maas'
- logttr_maas = wl_measures_lexical_diversity.logttr(main, TOKENS_100)
+ logttr_maas = wl_measures_lexical_density_diversity.logttr(main, text_tokens_100)
settings['logttr']['variant'] = 'Dugast'
- logttr_dugast = wl_measures_lexical_diversity.logttr(main, TOKENS_100)
+ logttr_dugast = wl_measures_lexical_density_diversity.logttr(main, text_tokens_100)
num_types = 5
num_tokens = 100
@@ -87,28 +101,28 @@ def test_logttr():
assert logttr_dugast == (numpy.log(num_tokens) ** 2) / (numpy.log(num_tokens) - numpy.log(num_types))
def test_msttr():
- msttr_100 = wl_measures_lexical_diversity.msttr(main, TOKENS_101)
+ msttr_100 = wl_measures_lexical_density_diversity.msttr(main, text_tokens_101)
settings['msttr']['num_tokens_in_each_seg'] = 1000
- msttr_1000 = wl_measures_lexical_diversity.msttr(main, TOKENS_101)
+ msttr_1000 = wl_measures_lexical_density_diversity.msttr(main, text_tokens_101)
assert msttr_100 == 5 / 100
assert msttr_1000 == 0
def test_mtld():
- mtld_100 = wl_measures_lexical_diversity.mtld(main, TOKENS_100)
+ mtld_100 = wl_measures_lexical_density_diversity.mtld(main, text_tokens_100)
assert mtld_100 == 100 / (14 + 0 / 0.28)
def test_mattr():
- mattr_100 = wl_measures_lexical_diversity.mattr(main, TOKENS_100)
- mattr_1000 = wl_measures_lexical_diversity.mattr(main, TOKENS_1000)
+ mattr_100 = wl_measures_lexical_density_diversity.mattr(main, text_tokens_100)
+ mattr_1000 = wl_measures_lexical_density_diversity.mattr(main, text_tokens_1000)
- assert mattr_100 == wl_measures_lexical_diversity.ttr(main, TOKENS_100)
+ assert mattr_100 == wl_measures_lexical_density_diversity.ttr(main, text_tokens_100)
assert mattr_1000 == 5 / 500
# Reference: Popescu I.-I., Mačutek, J, & Altmann, G. (2008). Word frequency and arc length. Glottometrics, 17, 21, 33.
def test_popescu_macutek_altmanns_b1_b2_b3_b4_b5():
- b1, b2, b3, b4, b5 = wl_measures_lexical_diversity.popescu_macutek_altmanns_b1_b2_b3_b4_b5(main, TOKENS_225)
+ b1, b2, b3, b4, b5 = wl_measures_lexical_density_diversity.popescu_macutek_altmanns_b1_b2_b3_b4_b5(main, text_tokens_225)
assert round(b1, 3) == 0.969
assert round(b2, 3) == 0.527
@@ -118,79 +132,79 @@ def test_popescu_macutek_altmanns_b1_b2_b3_b4_b5():
# Reference: Popescu, I.-I. (2009). Word frequency studies (p. 30). Mouton de Gruyter.
def test_popescus_r1():
- r1 = wl_measures_lexical_diversity.popescus_r1(main, TOKENS_225)
+ r1 = wl_measures_lexical_density_diversity.popescus_r1(main, text_tokens_225)
assert round(r1, 4) == 0.8667
# Reference: Popescu, I.-I. (2009). Word frequency studies (p. 39). Mouton de Gruyter.
def test_popescus_r2():
- r2 = wl_measures_lexical_diversity.popescus_r2(main, TOKENS_225)
+ r2 = wl_measures_lexical_density_diversity.popescus_r2(main, text_tokens_225)
assert round(r2, 3) == 0.871
# Reference: Popescu, I.-I. (2009). Word frequency studies (p. 51). Mouton de Gruyter.
def test_popescus_r3():
- r3 = wl_measures_lexical_diversity.popescus_r3(main, TOKENS_225)
+ r3 = wl_measures_lexical_density_diversity.popescus_r3(main, text_tokens_225)
assert round(r3, 4) == 0.3778
# Reference: Popescu, I.-I. (2009). Word frequency studies (p. 59). Mouton de Gruyter.
def test_popescus_r4():
- r4 = wl_measures_lexical_diversity.popescus_r4(main, TOKENS_225)
+ r4 = wl_measures_lexical_density_diversity.popescus_r4(main, text_tokens_225)
assert round(r4, 4) == 0.6344
# Reference: Popescu, I.-I. (2009). Word frequency studies (pp. 170, 172). Mouton de Gruyter.
def test_repeat_rate():
settings['repeat_rate']['use_data'] = 'Rank-frequency distribution'
- rr_distribution = wl_measures_lexical_diversity.repeat_rate(main, TOKENS_225)
+ rr_distribution = wl_measures_lexical_density_diversity.repeat_rate(main, text_tokens_225)
settings['repeat_rate']['use_data'] = 'Frequency spectrum'
- rr_spectrum = wl_measures_lexical_diversity.repeat_rate(main, TOKENS_225)
+ rr_spectrum = wl_measures_lexical_density_diversity.repeat_rate(main, text_tokens_225)
assert round(rr_distribution, 4) == 0.0153
assert round(rr_spectrum, 4) == 0.4974
def test_rttr():
- rttr = wl_measures_lexical_diversity.rttr(main, TOKENS_100)
+ rttr = wl_measures_lexical_density_diversity.rttr(main, text_tokens_100)
assert rttr == 5 / 100 ** 0.5
# Reference: Popescu, I.-I. (2009). Word frequency studies (pp. 176, 178). Mouton de Gruyter.
def test_shannon_entropy():
settings['shannon_entropy']['use_data'] = 'Rank-frequency distribution'
- h_distribution = wl_measures_lexical_diversity.shannon_entropy(main, TOKENS_225)
+ h_distribution = wl_measures_lexical_density_diversity.shannon_entropy(main, text_tokens_225)
settings['shannon_entropy']['use_data'] = 'Frequency spectrum'
- h_spectrum = wl_measures_lexical_diversity.shannon_entropy(main, TOKENS_225)
+ h_spectrum = wl_measures_lexical_density_diversity.shannon_entropy(main, text_tokens_225)
assert round(h_distribution, 4) == 6.5270
assert round(h_spectrum, 4) == 1.6234
def test_simpsons_l():
- l = wl_measures_lexical_diversity.simpsons_l(main, TOKENS_100)
+ l = wl_measures_lexical_density_diversity.simpsons_l(main, text_tokens_100)
assert l == (5 * 20 ** 2 - 100) / (100 * (100 - 1))
def test_ttr():
- ttr = wl_measures_lexical_diversity.ttr(main, TOKENS_100)
+ ttr = wl_measures_lexical_density_diversity.ttr(main, text_tokens_100)
assert ttr == 5 / 100
def test_vocdd():
- vocdd_10 = wl_measures_lexical_diversity.vocdd(main, TOKENS_10)
- vocdd_100 = wl_measures_lexical_diversity.vocdd(main, TOKENS_100)
- vocdd_1000 = wl_measures_lexical_diversity.vocdd(main, TOKENS_1000)
+ vocdd_10 = wl_measures_lexical_density_diversity.vocdd(main, text_tokens_10)
+ vocdd_100 = wl_measures_lexical_density_diversity.vocdd(main, text_tokens_100)
+ vocdd_1000 = wl_measures_lexical_density_diversity.vocdd(main, text_tokens_1000)
assert vocdd_10 > 0
assert vocdd_100 > 0
assert vocdd_1000 > 0
def test_yules_characteristic_k():
- k = wl_measures_lexical_diversity.yules_characteristic_k(main, TOKENS_100)
+ k = wl_measures_lexical_density_diversity.yules_characteristic_k(main, text_tokens_100)
assert k == 10000 * ((5 * 20 ** 2 - 100) / (100 ** 2))
def test_yules_index_of_diversity():
- index_of_diversity = wl_measures_lexical_diversity.yules_index_of_diversity(main, TOKENS_100)
+ index_of_diversity = wl_measures_lexical_density_diversity.yules_index_of_diversity(main, text_tokens_100)
assert index_of_diversity == (100 ** 2) / (5 * 20 ** 2 - 100)
@@ -201,6 +215,7 @@ def test_yules_index_of_diversity():
test_herdans_vm()
test_hdd()
test_honores_stat()
+ test_lexical_density()
test_logttr()
test_msttr()
test_mtld()
diff --git a/tests/tests_measures/test_measures_readability.py b/tests/tests_measures/test_measures_readability.py
index 557bc8340..b77fff36f 100644
--- a/tests/tests_measures/test_measures_readability.py
+++ b/tests/tests_measures/test_measures_readability.py
@@ -16,7 +16,6 @@
# along with this program. If not, see .
# ----------------------------------------------------------------------
-import copy
import math
import numpy
@@ -24,15 +23,6 @@
from tests import wl_test_init
from wordless.wl_measures import wl_measures_readability
-class Wl_Test_Text():
- def __init__(self, tokens_multilevel, lang = 'eng_us'):
- super().__init__()
-
- self.main = main
- self.lang = lang
- self.tokens_multilevel = tokens_multilevel
- self.tokens_multilevel_with_puncs = copy.deepcopy(tokens_multilevel)
-
main = wl_test_init.Wl_Test_Main()
settings = main.settings_custom['measures']['readability']
@@ -40,54 +30,56 @@ def __init__(self, tokens_multilevel, lang = 'eng_us'):
TOKENS_MULTILEVEL_12 = [[[['This', 'is', 'a', 'sentence', '.']], [['This', 'is', 'a', 'sentence', '.']]], [[['This', 'is', 'a', 'sen-tence0', '.']]]]
TOKENS_MULTILEVEL_12_PREP = [[[['This', 'is', 'a', 'sentence', '.']], [['This', 'is', 'a', 'sentence', '.']]], [[['From', 'beginning', 'to', 'end', '.']]]]
TOKENS_MULTILEVEL_12_PROPN = [[[['This', 'is', 'a', 'sentence', '.']], [['This', 'is', 'a', 'sentence', '.']]], [[['Louisiana', 'readability', 'boxes', 'created', '.']]]]
+TOKENS_MULTILEVEL_12_HYPHEN = [[[['This', 'is', 'a', 'sentence', '.']], [['This', 'is', 'a', 'sentence', '.']]], [[['This', 'is', 'a-', 'sen-tence0', '.']]]]
TOKENS_MULTILEVEL_100 = [[[['This', 'is', 'a', 'sentence', '.']], [['This', 'is', 'a', 'sentence', '.']]]] * 12 + [[[['This', 'is', 'a', 'sen-tence0', '.']]]]
TOKENS_MULTILEVEL_100_PREP = [[[['This', 'is', 'a', 'sentence', '.']], [['This', 'is', 'a', 'sentence', '.']]]] * 12 + [[[['I', 'am', 'behind', 'you', '.']]]]
TOKENS_MULTILEVEL_100_CONJ = [[[['This', 'is', 'a', 'sentence', '.']], [['This', 'is', 'a', 'sentence', '.']]]] * 12 + [[[['Go', 'ahead', 'and', 'turn', '.']]]]
TOKENS_MULTILEVEL_120 = [[[['This', 'is', 'a', 'sentence', '.']], [['This', 'is', 'a', 'metropolis', '.']]]] * 15
TOKENS_MULTILEVEL_150 = [[[['This', 'is', 'a', 'sentence', '.']], [['This', 'is', 'a', 'sentence', '.']]]] * 18 + [[[['This', 'is', 'a', 'sen-tence0', 'for', 'testing', '.']]]]
-test_text_eng_0 = Wl_Test_Text(TOKENS_MULTILEVEL_0)
-test_text_eng_12 = Wl_Test_Text(TOKENS_MULTILEVEL_12)
-test_text_eng_12_prep = Wl_Test_Text(TOKENS_MULTILEVEL_12_PREP)
-test_text_eng_12_propn = Wl_Test_Text(TOKENS_MULTILEVEL_12_PROPN)
-test_text_eng_100 = Wl_Test_Text(TOKENS_MULTILEVEL_100)
-test_text_eng_100_prep = Wl_Test_Text(TOKENS_MULTILEVEL_100_PREP)
-test_text_eng_100_conj = Wl_Test_Text(TOKENS_MULTILEVEL_100_CONJ)
-test_text_eng_120 = Wl_Test_Text(TOKENS_MULTILEVEL_120)
-test_text_eng_150 = Wl_Test_Text(TOKENS_MULTILEVEL_150)
-
-test_text_ara_0 = Wl_Test_Text(TOKENS_MULTILEVEL_0, lang = 'ara')
-test_text_ara_12 = Wl_Test_Text(TOKENS_MULTILEVEL_12, lang = 'ara')
-test_text_ara_faseeh = Wl_Test_Text([[[['\u064B\u064B\u0621']]]], lang = 'ara')
-
-test_text_deu_0 = Wl_Test_Text(TOKENS_MULTILEVEL_0, lang = 'deu_de')
-test_text_deu_12 = Wl_Test_Text(TOKENS_MULTILEVEL_12, lang = 'deu_de')
-test_text_deu_120 = Wl_Test_Text(TOKENS_MULTILEVEL_120, lang = 'deu_de')
-
-test_text_ita_0 = Wl_Test_Text(TOKENS_MULTILEVEL_0, lang = 'ita')
-test_text_ita_12 = Wl_Test_Text(TOKENS_MULTILEVEL_12, lang = 'ita')
-
-test_text_spa_0 = Wl_Test_Text(TOKENS_MULTILEVEL_0, lang = 'spa')
-test_text_spa_12 = Wl_Test_Text(TOKENS_MULTILEVEL_12, lang = 'spa')
-test_text_spa_100 = Wl_Test_Text(TOKENS_MULTILEVEL_100, lang = 'spa')
-test_text_spa_120 = Wl_Test_Text(TOKENS_MULTILEVEL_120, lang = 'spa')
-test_text_spa_150 = Wl_Test_Text(TOKENS_MULTILEVEL_150, lang = 'spa')
-
-test_text_tha_12 = Wl_Test_Text(TOKENS_MULTILEVEL_12, lang = 'tha')
-test_text_tha_100 = Wl_Test_Text(TOKENS_MULTILEVEL_100, lang = 'tha')
-
-test_text_vie_0 = Wl_Test_Text(TOKENS_MULTILEVEL_0, lang = 'vie')
-test_text_vie_12 = Wl_Test_Text(TOKENS_MULTILEVEL_12, lang = 'vie')
-
-test_text_afr_12 = Wl_Test_Text(TOKENS_MULTILEVEL_12, lang = 'afr')
-test_text_nld_12 = Wl_Test_Text(TOKENS_MULTILEVEL_12, lang = 'nld')
-test_text_fra_12 = Wl_Test_Text(TOKENS_MULTILEVEL_12, lang = 'fra')
-test_text_pol_12 = Wl_Test_Text(TOKENS_MULTILEVEL_12, lang = 'pol')
-test_text_rus_12 = Wl_Test_Text(TOKENS_MULTILEVEL_12, lang = 'rus')
-test_text_ukr_12 = Wl_Test_Text(TOKENS_MULTILEVEL_12, lang = 'ukr')
-
-test_text_other_12 = Wl_Test_Text(TOKENS_MULTILEVEL_12, lang = 'other')
-test_text_other_100 = Wl_Test_Text(TOKENS_MULTILEVEL_100, lang = 'other')
+test_text_eng_0 = wl_test_init.Wl_Test_Text(main, TOKENS_MULTILEVEL_0)
+test_text_eng_12 = wl_test_init.Wl_Test_Text(main, TOKENS_MULTILEVEL_12)
+test_text_eng_12_prep = wl_test_init.Wl_Test_Text(main, TOKENS_MULTILEVEL_12_PREP)
+test_text_eng_12_propn = wl_test_init.Wl_Test_Text(main, TOKENS_MULTILEVEL_12_PROPN)
+test_text_eng_12_hyphen = wl_test_init.Wl_Test_Text(main, TOKENS_MULTILEVEL_12_HYPHEN)
+test_text_eng_100 = wl_test_init.Wl_Test_Text(main, TOKENS_MULTILEVEL_100)
+test_text_eng_100_prep = wl_test_init.Wl_Test_Text(main, TOKENS_MULTILEVEL_100_PREP)
+test_text_eng_100_conj = wl_test_init.Wl_Test_Text(main, TOKENS_MULTILEVEL_100_CONJ)
+test_text_eng_120 = wl_test_init.Wl_Test_Text(main, TOKENS_MULTILEVEL_120)
+test_text_eng_150 = wl_test_init.Wl_Test_Text(main, TOKENS_MULTILEVEL_150)
+
+test_text_ara_0 = wl_test_init.Wl_Test_Text(main, TOKENS_MULTILEVEL_0, lang = 'ara')
+test_text_ara_12 = wl_test_init.Wl_Test_Text(main, TOKENS_MULTILEVEL_12, lang = 'ara')
+test_text_ara_faseeh = wl_test_init.Wl_Test_Text(main, [[[['\u064B\u064B\u0621']]]], lang = 'ara')
+
+test_text_deu_0 = wl_test_init.Wl_Test_Text(main, TOKENS_MULTILEVEL_0, lang = 'deu_de')
+test_text_deu_12 = wl_test_init.Wl_Test_Text(main, TOKENS_MULTILEVEL_12, lang = 'deu_de')
+test_text_deu_120 = wl_test_init.Wl_Test_Text(main, TOKENS_MULTILEVEL_120, lang = 'deu_de')
+
+test_text_ita_0 = wl_test_init.Wl_Test_Text(main, TOKENS_MULTILEVEL_0, lang = 'ita')
+test_text_ita_12 = wl_test_init.Wl_Test_Text(main, TOKENS_MULTILEVEL_12, lang = 'ita')
+
+test_text_spa_0 = wl_test_init.Wl_Test_Text(main, TOKENS_MULTILEVEL_0, lang = 'spa')
+test_text_spa_12 = wl_test_init.Wl_Test_Text(main, TOKENS_MULTILEVEL_12, lang = 'spa')
+test_text_spa_100 = wl_test_init.Wl_Test_Text(main, TOKENS_MULTILEVEL_100, lang = 'spa')
+test_text_spa_120 = wl_test_init.Wl_Test_Text(main, TOKENS_MULTILEVEL_120, lang = 'spa')
+test_text_spa_150 = wl_test_init.Wl_Test_Text(main, TOKENS_MULTILEVEL_150, lang = 'spa')
+
+test_text_tha_12 = wl_test_init.Wl_Test_Text(main, TOKENS_MULTILEVEL_12, lang = 'tha')
+test_text_tha_100 = wl_test_init.Wl_Test_Text(main, TOKENS_MULTILEVEL_100, lang = 'tha')
+
+test_text_vie_0 = wl_test_init.Wl_Test_Text(main, TOKENS_MULTILEVEL_0, lang = 'vie')
+test_text_vie_12 = wl_test_init.Wl_Test_Text(main, TOKENS_MULTILEVEL_12, lang = 'vie')
+
+test_text_afr_12 = wl_test_init.Wl_Test_Text(main, TOKENS_MULTILEVEL_12, lang = 'afr')
+test_text_nld_12 = wl_test_init.Wl_Test_Text(main, TOKENS_MULTILEVEL_12, lang = 'nld')
+test_text_fra_12 = wl_test_init.Wl_Test_Text(main, TOKENS_MULTILEVEL_12, lang = 'fra')
+test_text_pol_12 = wl_test_init.Wl_Test_Text(main, TOKENS_MULTILEVEL_12, lang = 'pol')
+test_text_rus_12 = wl_test_init.Wl_Test_Text(main, TOKENS_MULTILEVEL_12, lang = 'rus')
+test_text_ukr_12 = wl_test_init.Wl_Test_Text(main, TOKENS_MULTILEVEL_12, lang = 'ukr')
+
+test_text_other_12 = wl_test_init.Wl_Test_Text(main, TOKENS_MULTILEVEL_12, lang = 'other')
+test_text_other_100 = wl_test_init.Wl_Test_Text(main, TOKENS_MULTILEVEL_100, lang = 'other')
def test_rd():
rd_ara_0 = wl_measures_readability.rd(main, test_text_ara_0)
@@ -821,7 +813,7 @@ def test_td():
def test_wheeler_smiths_readability_formula():
wheeler_smith_eng_0 = wl_measures_readability.wheeler_smiths_readability_formula(main, test_text_eng_0)
- wheeler_smith_eng_12 = wl_measures_readability.wheeler_smiths_readability_formula(main, test_text_eng_12)
+ wheeler_smith_eng_12 = wl_measures_readability.wheeler_smiths_readability_formula(main, test_text_eng_12_hyphen)
wheeler_smith_spa_12 = wl_measures_readability.wheeler_smiths_readability_formula(main, test_text_spa_12)
wheeler_smith_other_12 = wl_measures_readability.wheeler_smiths_readability_formula(main, test_text_other_12)
diff --git a/tests/tests_nlp/test_lemmatization.py b/tests/tests_nlp/test_lemmatization.py
index 1e2536167..d173674ec 100644
--- a/tests/tests_nlp/test_lemmatization.py
+++ b/tests/tests_nlp/test_lemmatization.py
@@ -94,7 +94,7 @@ def test_lemmatize(lang, lemmatizer):
case 'eng_gb' | 'eng_us':
match lemmatizer:
case 'nltk_wordnet':
- results = ['English', 'be', 'a', 'West', 'Germanic', 'language', 'in', 'the', 'Indo-European', 'language', 'family', '.']
+ results = ['English', 'be', 'a', 'West', 'Germanic', 'language', 'in', 'the', 'Indo', '-', 'European', 'language', 'family', '.']
case 'simplemma_eng':
results = ['English', 'be', 'a', 'west', 'germanic', 'language', 'in', 'the', 'Indo-European', 'language', 'family', '.']
case _:
diff --git a/tests/tests_nlp/test_pos_tagging.py b/tests/tests_nlp/test_pos_tagging.py
index 9170eb506..0f693035a 100644
--- a/tests/tests_nlp/test_pos_tagging.py
+++ b/tests/tests_nlp/test_pos_tagging.py
@@ -42,6 +42,11 @@
test_pos_taggers.append((lang, pos_tagger))
test_pos_taggers_local.append((lang, pos_tagger))
+def test_to_content_function():
+ assert wl_pos_tagging.to_content_function('ADJ') == 'Content words'
+ assert wl_pos_tagging.to_content_function('ADP') == 'Function words'
+ assert wl_pos_tagging.to_content_function('None') is None
+
@pytest.mark.parametrize('lang, pos_tagger', test_pos_taggers)
def test_pos_tag(lang, pos_tagger):
tests_lang_util_skipped = False
@@ -214,6 +219,8 @@ def test_pos_tag_misc():
main.settings_custom['pos_tagging']['pos_tagger_settings']['to_universal_pos_tags'] = False
if __name__ == '__main__':
+ test_to_content_function()
+
for lang, pos_tagger in test_pos_taggers_local:
test_pos_tag(lang, pos_tagger)
diff --git a/tests/tests_nlp/test_sentence_tokenization.py b/tests/tests_nlp/test_sentence_tokenization.py
index d5b914e3f..903cc49c2 100644
--- a/tests/tests_nlp/test_sentence_tokenization.py
+++ b/tests/tests_nlp/test_sentence_tokenization.py
@@ -20,7 +20,7 @@
import pytest
from tests import wl_test_init, wl_test_lang_examples
-from wordless.wl_nlp import wl_sentence_tokenization, wl_texts, wl_word_tokenization
+from wordless.wl_nlp import wl_sentence_tokenization
from wordless.wl_utils import wl_misc
_, is_macos, _ = wl_misc.check_os()
@@ -140,7 +140,10 @@ def test_sentence_split(lang):
text = ''.join(getattr(wl_test_lang_examples, f'TEXT_{lang.upper()}'))
)
- if lang not in ['chu', 'cop', 'hbo', 'orv', 'tha', 'bod']:
+ if lang not in [
+ 'lzh', 'zho_cn', 'zho_tw', 'chu', 'cop', 'hbo', 'isl', 'jpn', 'orv', 'srp_latn',
+ 'tha', 'bod'
+ ]:
assert len(sentences_split) > 1
@pytest.mark.parametrize('lang', test_langs_split)
@@ -332,32 +335,23 @@ def test_sentence_seg_tokenize(lang):
case _:
raise wl_test_init.Wl_Exception_Tests_Lang_Skipped(lang)
-@pytest.mark.parametrize('lang', test_langs_split)
-def test_sentence_seg_split(lang):
- print(f'Testing {lang} / Sentence Segment Splitter...')
-
- sentence_segs = wl_sentence_tokenization.wl_sentence_seg_split(
- main,
- text = ''.join(getattr(wl_test_lang_examples, f'TEXT_{lang.upper()}'))
- )
-
- if lang not in ['chu', 'cop', 'orv', 'tha']:
- assert len(sentence_segs) > 1
-
@pytest.mark.parametrize('lang', test_langs)
def test_sentence_seg_tokenize_tokens(lang):
print(f'Testing {lang} / Sentence Segment Tokenizer with tokens...')
- tokens = wl_word_tokenization.wl_word_tokenize_flat(
- main,
- text = ''.join(getattr(wl_test_lang_examples, f'TEXT_{lang.upper()}')),
- lang = lang
- )
- sentence_segs = wl_sentence_tokenization.wl_sentence_seg_tokenize_tokens(main, wl_texts.to_display_texts(tokens))
+ tokens = ''.join(getattr(wl_test_lang_examples, f'TEXT_{lang.upper()}')).split()
+ sentence_segs = wl_sentence_tokenization.wl_sentence_seg_tokenize_tokens(main, tokens)
- if lang not in ['chu', 'cop', 'orv', 'tha']:
+ if lang not in [
+ 'lzh', 'zho_cn', 'zho_tw', 'chu', 'cop', 'jpn', 'orv', 'tha'
+ ]:
assert len(sentence_segs) > 1
+def test_sentence_tokenize_misc():
+ # Sentences and sentence segments should not be split within pre-tokenized tokens
+ assert wl_sentence_tokenization.wl_sentence_split(main, text = 'a.b c') == ['a.b c']
+ assert wl_sentence_tokenization.wl_sentence_seg_tokenize_tokens(main, tokens = ['a,b', 'c']) == [['a,b', 'c']]
+
if __name__ == '__main__':
for lang, sentence_tokenizer in test_sentence_tokenizers_local:
test_sentence_tokenize(lang, sentence_tokenizer)
@@ -368,8 +362,7 @@ def test_sentence_seg_tokenize_tokens(lang):
for lang in test_langs_split:
test_sentence_seg_tokenize(lang)
- for lang in test_langs_split:
- test_sentence_seg_split(lang)
-
for lang in test_langs_split:
test_sentence_seg_tokenize_tokens(lang)
+
+ test_sentence_tokenize_misc()
diff --git a/tests/tests_nlp/test_texts.py b/tests/tests_nlp/test_texts.py
index ceb515b22..35b2357ca 100644
--- a/tests/tests_nlp/test_texts.py
+++ b/tests/tests_nlp/test_texts.py
@@ -48,6 +48,8 @@ def test_split_texts_properties():
'lang': 'eng_us',
'syls': None,
'tag': '_NN',
+ 'tag_universal': None,
+ 'content_function': None,
'lemma': None,
'head': None,
'dependency_relation': None,
@@ -97,20 +99,17 @@ def test_update_token_properties():
def test_clean_texts():
assert wl_texts.clean_texts([' test ', ' ']) == ['test']
-def test_wl_text_blank():
- wl_texts.Wl_Text_Blank()
-
def test_wl_text_total():
- text_1 = wl_texts.Wl_Text_Blank()
- text_1.lang = 'eng_us'
- text_1.tokens_multilevel = []
- text_1.tokens_multilevel_with_puncs = []
+ text_1 = wl_test_init.Wl_Test_Text(main, tokens_multilevel = [], lang = 'eng_us', tagged = False)
+ text_2 = wl_test_init.Wl_Test_Text(main, tokens_multilevel = [], lang = 'eng_gb', tagged = True)
- text_2 = copy.deepcopy(text_1)
- text_2.lang = 'other'
+ text_total_1 = wl_texts.Wl_Text_Total(texts = [text_1, text_1])
+ text_total_2 = wl_texts.Wl_Text_Total(texts = [text_1, text_2])
- wl_texts.Wl_Text_Total(texts = [text_1, text_1])
- wl_texts.Wl_Text_Total(texts = [text_1, text_2])
+ assert text_total_1.lang == 'eng_us'
+ assert not text_total_1.tagged
+ assert text_total_2.lang == 'other'
+ assert text_total_2.tagged
if __name__ == '__main__':
test_wl_token()
@@ -128,5 +127,4 @@ def test_wl_text_total():
test_update_token_properties()
test_clean_texts()
- test_wl_text_blank()
test_wl_text_total()
diff --git a/tests/tests_settings/test_settings_default.py b/tests/tests_settings/test_settings_default.py
index fb85d8cc7..c5f1ffe9f 100644
--- a/tests/tests_settings/test_settings_default.py
+++ b/tests/tests_settings/test_settings_default.py
@@ -24,5 +24,10 @@
def test_settings_default():
assert wl_settings_default.init_settings_default(main)
+ # Check for invalid conversion of universal POS tags into content/function words
+ for mappings in main.settings_default['pos_tagging']['tagsets']['mapping_settings'].values():
+ for mapping in mappings.values():
+ assert all(len(pos_mapping) == 5 for pos_mapping in mapping)
+
if __name__ == '__main__':
test_settings_default()
diff --git a/tests/tests_settings/test_settings_measures.py b/tests/tests_settings/test_settings_measures.py
index 8d16c8260..2d30b2225 100644
--- a/tests/tests_settings/test_settings_measures.py
+++ b/tests/tests_settings/test_settings_measures.py
@@ -28,11 +28,11 @@ def test_wl_settings_measures_readability():
settings_measures_readability.load_settings(defaults = True)
settings_measures_readability.apply_settings()
-def test_wl_settings_measures_lexical_diversity():
- settings_measures_lexical_diversity = wl_settings_measures.Wl_Settings_Measures_Lexical_Diversity(main)
- settings_measures_lexical_diversity.load_settings()
- settings_measures_lexical_diversity.load_settings(defaults = True)
- settings_measures_lexical_diversity.apply_settings()
+def test_wl_settings_measures_lexical_density_diversity():
+ settings_measures_lexical_density_diversity = wl_settings_measures.Wl_Settings_Measures_Lexical_Density_Diversity(main)
+ settings_measures_lexical_density_diversity.load_settings()
+ settings_measures_lexical_density_diversity.load_settings(defaults = True)
+ settings_measures_lexical_density_diversity.apply_settings()
def test_wl_settings_measures_dispersion():
settings_measures_dispersion = wl_settings_measures.Wl_Settings_Measures_Dispersion(main)
@@ -66,7 +66,7 @@ def test_wl_settings_measures_effect_size():
if __name__ == '__main__':
test_wl_settings_measures_readability()
- test_wl_settings_measures_lexical_diversity()
+ test_wl_settings_measures_lexical_density_diversity()
test_wl_settings_measures_dispersion()
test_wl_settings_measures_adjusted_freq()
test_wl_settings_measures_statistical_significance()
diff --git a/tests/tests_settings/test_settings_pos_tagging.py b/tests/tests_settings/test_settings_pos_tagging.py
index 82dd1eb3b..9992dfb30 100644
--- a/tests/tests_settings/test_settings_pos_tagging.py
+++ b/tests/tests_settings/test_settings_pos_tagging.py
@@ -42,7 +42,7 @@ def test_wl_settings_pos_tagging_tagsets():
settings_pos_tagging_tagsets.preview_lang_changed()
settings_pos_tagging_tagsets.preview_pos_tagger_changed()
- settings_pos_tagging_tagsets.update_gui(['test', 'test', 'test', 'test'])
+ settings_pos_tagging_tagsets.update_gui([['test', 'test', 'test', 'test', 'test']])
main.settings_custom['pos_tagging']['tagsets']['preview_settings']['preview_pos_tagger']['eng_us'] = 'nltk_perceptron_eng'
settings_pos_tagging_tagsets.reset_currently_shown_table()
diff --git a/tests/wl_test_file_area.py b/tests/wl_test_file_area.py
index 1b5e06bfa..b4dd226fd 100644
--- a/tests/wl_test_file_area.py
+++ b/tests/wl_test_file_area.py
@@ -118,17 +118,24 @@ def update_gui_ref(err_msg, new_files):
assert new_file['path_original'] == wl_paths.get_normalized_path(file_path)
- if i < NUM_FILES_ALL or new_file['name'] == '[eng_gb] Tagged':
+ if i < NUM_FILES_ALL or new_file['name'] in ['[amh] No language support', '[eng_gb] Tagged']:
assert new_file['encoding'] == 'utf_8'
else:
assert new_file['encoding'] == 'ascii'
- assert new_file['lang'] == 'eng_us'
+ if new_file['name'] == '[amh] No language support':
+ assert new_file['lang'] == 'other'
+ else:
+ assert new_file['lang'] == 'eng_us'
+
assert not new_file['tokenized']
assert not new_file['tagged']
+ if new_file['name'] == '[amh] No language support':
+ new_file['lang'] = new_file['text'].lang = 'amh'
+
if new_file['name'] == '[eng_gb] Tagged':
- new_file['tagged'] = True
+ new_file['tagged'] = new_file['text'].tagged = True
print(f'done! (In {round(time.time() - time_start, 2)} seconds)')
diff --git a/tests/wl_test_init.py b/tests/wl_test_init.py
index 56f4471c9..f63fc35dd 100644
--- a/tests/wl_test_init.py
+++ b/tests/wl_test_init.py
@@ -33,11 +33,13 @@
from tests import wl_test_file_area
from wordless import wl_file_area
from wordless.wl_checks import wl_checks_misc
+from wordless.wl_nlp import wl_texts
from wordless.wl_settings import wl_settings, wl_settings_default, wl_settings_global
from wordless.wl_utils import wl_misc
from wordless.wl_widgets import wl_tables
-SEARCH_TERMS = ['take']
+# English, Amharic
+SEARCH_TERMS = ['take', 'አማርኛ']
# An instance of QApplication must be created before any instance of QWidget
wl_app = QApplication(sys.argv)
@@ -220,14 +222,6 @@ def switch_lang_utils_stanza(self):
break
-class Wl_Exception_Tests_Lang_Skipped(Exception):
- def __init__(self, lang):
- super().__init__(f'Tests for language "{lang}" is skipped!')
-
-class Wl_Exception_Tests_Lang_Util_Skipped(Exception):
- def __init__(self, lang_util):
- super().__init__(f'Tests for language utility "{lang_util}" is skipped!')
-
class Wl_Test_Table(QTableView):
def __init__(self, parent, tab = ''):
super().__init__(parent)
@@ -252,6 +246,38 @@ def set_label(self, row, col, text):
self.setIndexWidget(self.model().index(row, col), QLabel(text))
self.indexWidget(self.model().index(row, col)).tokens_raw = [text]
+class Wl_Test_Text:
+ def __init__(self, main, tokens_multilevel, lang = 'eng_us', tagged = False):
+ self.main = main
+ self.lang = lang
+ self.tagged = tagged
+
+ self.tokens_multilevel = []
+
+ for para in tokens_multilevel:
+ self.tokens_multilevel.append([])
+
+ for sentence in para:
+ self.tokens_multilevel[-1].append([])
+
+ for sentence_seg in sentence:
+ self.tokens_multilevel[-1][-1].append(wl_texts.to_tokens(sentence_seg, lang = lang))
+
+ self.tokens_multilevel_with_puncs = copy.deepcopy(tokens_multilevel)
+
+ self.get_tokens_flat = lambda: wl_texts.Wl_Text.get_tokens_flat(self)
+ self.update_num_tokens = lambda: wl_texts.Wl_Text.update_num_tokens(self)
+
+ self.update_num_tokens()
+
+class Wl_Exception_Tests_Lang_Skipped(Exception):
+ def __init__(self, lang):
+ super().__init__(f'Tests for language "{lang}" is skipped!')
+
+class Wl_Exception_Tests_Lang_Util_Skipped(Exception):
+ def __init__(self, lang_util):
+ super().__init__(f'Tests for language utility "{lang_util}" is skipped!')
+
def wl_test_index(row, col):
return QStandardItemModel().createIndex(row, col)
diff --git a/wordless/wl_colligation_extractor.py b/wordless/wl_colligation_extractor.py
index fd03fa676..1e96bbbf8 100644
--- a/wordless/wl_colligation_extractor.py
+++ b/wordless/wl_colligation_extractor.py
@@ -891,7 +891,6 @@ def __init__(self, main, dialog_progress, update_gui):
def run(self):
try:
- texts = []
colligations_freqs_files_all = []
settings = self.main.settings_custom['colligation_extractor']
@@ -1091,15 +1090,11 @@ def run(self):
# Frequency (All)
colligations_freqs_files_all.append(colligations_freqs_file_all)
- texts.append(text)
-
# Total
if len(files) > 1:
colligations_freqs_total = {}
colligations_freqs_total_all = {}
- texts.append(wl_texts.Wl_Text_Blank())
-
# Frequency
for colligations_freqs_file in self.colligations_freqs_files:
for colligation, freqs in colligations_freqs_file.items():
@@ -1132,8 +1127,7 @@ def run(self):
# Used for z-score (Berry-Rogghe)
span = (abs(window_left) + abs(window_right)) / 2
- for text, colligations_freqs_file, colligations_freqs_file_all in zip(
- texts,
+ for colligations_freqs_file, colligations_freqs_file_all in zip(
self.colligations_freqs_files,
colligations_freqs_files_all
):
diff --git a/wordless/wl_collocation_extractor.py b/wordless/wl_collocation_extractor.py
index 6ca9dd4fe..5173d7c56 100644
--- a/wordless/wl_collocation_extractor.py
+++ b/wordless/wl_collocation_extractor.py
@@ -888,7 +888,6 @@ def __init__(self, main, dialog_progress, update_gui):
def run(self):
try:
- texts = []
collocations_freqs_files_all = []
settings = self.main.settings_custom['collocation_extractor']
@@ -1088,12 +1087,8 @@ def run(self):
# Frequency (All)
collocations_freqs_files_all.append(collocations_freqs_file_all)
- texts.append(text)
-
# Total
if len(files) > 1:
- texts.append(wl_texts.Wl_Text_Blank())
-
collocations_freqs_total = {}
collocations_freqs_total_all = {}
@@ -1129,8 +1124,7 @@ def run(self):
# Used for z-score (Berry-Rogghe)
span = (abs(window_left) + abs(window_right)) / 2
- for text, collocations_freqs_file, collocations_freqs_file_all in zip(
- texts,
+ for collocations_freqs_file, collocations_freqs_file_all in zip(
self.collocations_freqs_files,
collocations_freqs_files_all
):
diff --git a/wordless/wl_measures/wl_measures_lexical_diversity.py b/wordless/wl_measures/wl_measures_lexical_density_diversity.py
similarity index 69%
rename from wordless/wl_measures/wl_measures_lexical_diversity.py
rename to wordless/wl_measures/wl_measures_lexical_density_diversity.py
index 0a53437ea..099a59b65 100644
--- a/wordless/wl_measures/wl_measures_lexical_diversity.py
+++ b/wordless/wl_measures/wl_measures_lexical_density_diversity.py
@@ -1,5 +1,5 @@
# ----------------------------------------------------------------------
-# Wordless: Measures - Lexical diversity
+# Wordless: Measures - Lexical density/diversity
# Copyright (C) 2018-2024 Ye Lei (叶磊)
#
# This program is free software: you can redistribute it and/or modify
@@ -25,7 +25,7 @@
from PyQt5.QtCore import QCoreApplication
import scipy
-from wordless.wl_nlp import wl_nlp_utils
+from wordless.wl_nlp import wl_nlp_utils, wl_pos_tagging
_tr = QCoreApplication.translate
@@ -33,35 +33,32 @@
# References:
# Brunét, E. (1978). Le vocabulaire de Jean Giraudoux: Structure et evolution. Slatkine.
# Bucks, R. S., Singh, S., Cuerden, J. M., & Wilcock, G. K. (2000). Analysis of spontaneous, conversational speech in dementia of Alzheimer type: Evaluation of an objective technique for analysing lexical performance. Aphasiology, 14(1), 71–91. https://doi.org/10.1080/026870300401603
-def brunets_index(main, tokens):
- return numpy.power(len(tokens), numpy.power(len(set(tokens)), -0.165))
+def brunets_index(main, text):
+ return numpy.power(text.num_tokens, numpy.power(text.num_types, -0.165))
# Corrected TTR
# References:
# Carroll, J. B. (1964). Language and thought. Prentice-Hall.
# Malvern, D., Richards, B., Chipere, N., & Durán, P. (2004). Lexical diversity and language development: Quantification and assessment (p. 26). Palgrave Macmillan.
-def cttr(main, tokens):
- return len(set(tokens)) / numpy.sqrt(2 * len(tokens))
+def cttr(main, text):
+ return text.num_types / numpy.sqrt(2 * text.num_tokens)
# Fisher's Index of Diversity
# Reference: Fisher, R. A., Steven, A. C., & Williams, C. B. (1943). The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology, 12(1), 42–58. https://doi.org/10.2307/1411
-def fishers_index_of_diversity(main, tokens):
- num_tokens = len(tokens)
- num_types = len(set(tokens))
-
+def fishers_index_of_diversity(main, text):
lambertw_x = -(
- numpy.exp(-(num_types / num_tokens))
- * num_types
- / num_tokens
+ numpy.exp(-(text.num_types / text.num_tokens))
+ * text.num_types
+ / text.num_tokens
)
if lambertw_x > -numpy.exp(-1):
alpha = -(
- (num_tokens * num_types)
+ (text.num_tokens * text.num_types)
/ (
- num_tokens
+ text.num_tokens
* scipy.special.lambertw(lambertw_x, -1).real
- + num_types
+ + text.num_types
)
)
else:
@@ -71,33 +68,30 @@ def fishers_index_of_diversity(main, tokens):
# Herdan's Vₘ
# Reference: Herdan, G. (1955). A new derivation and interpretation of Yule's ‘Characteristic’ K. Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 6(4), 332–339. https://doi.org/10.1007/BF01587632
-def herdans_vm(main, tokens):
- num_tokens = len(tokens)
- types_freqs = collections.Counter(tokens)
- num_types = len(types_freqs)
+def herdans_vm(main, text):
+ types_freqs = collections.Counter(text.get_tokens_flat())
freqs_nums_types = collections.Counter(types_freqs.values())
freqs = numpy.array(list(freqs_nums_types))
nums_types = numpy.array(list(freqs_nums_types.values()))
s2 = numpy.sum(nums_types * numpy.square(freqs))
- vm = s2 / (num_tokens ** 2) - 1 / num_types
+ vm = s2 / (text.num_tokens ** 2) - 1 / text.num_types
return vm
# HD-D
# Reference: McCarthy, P. M., & Jarvis, S. (2010). MTLD, vocd-D, and HD-D: A validation study of sophisticated approaches to lexical diversity assessment. Behavior Research Methods, 42(2), 381–392. https://doi.org/10.3758/BRM.42.2.381
-def hdd(main, tokens):
- sample_size = main.settings_custom['measures']['lexical_diversity']['hdd']['sample_size']
+def hdd(main, text):
+ sample_size = main.settings_custom['measures']['lexical_density_diversity']['hdd']['sample_size']
- num_tokens = len(tokens)
- tokens_freqs = collections.Counter(tokens)
+ tokens_freqs = collections.Counter(text.get_tokens_flat())
ttrs = numpy.empty(len(list(tokens_freqs)))
# Short texts
- sample_size = min(sample_size, num_tokens)
+ sample_size = min(sample_size, text.num_tokens)
for i, freq in enumerate(tokens_freqs.values()):
- ttrs[i] = scipy.stats.hypergeom.pmf(k = 0, M = num_tokens, n = freq, N = sample_size)
+ ttrs[i] = scipy.stats.hypergeom.pmf(k = 0, M = text.num_tokens, n = freq, N = sample_size)
# The probability that each type appears at least once in the sample
ttrs = 1 - ttrs
@@ -105,23 +99,36 @@ def hdd(main, tokens):
return sum(ttrs)
-# Honoré's statistic
+# Honoré's Statistic
# References:
# Honoré, A. (1979). Some simple measures of richness of vocabulary. Association of Literary and Linguistic Computing Bulletin, 7(2), 172–177.
# Bucks, R. S., Singh, S., Cuerden, J. M., & Wilcock, G. K. (2000). Analysis of spontaneous, conversational speech in dementia of Alzheimer type: Evaluation of an objective technique for analysing lexical performance. Aphasiology, 14(1), 71–91. https://doi.org/10.1080/026870300401603
-def honores_stat(main, tokens):
- num_tokens = len(tokens)
- types_freqs = collections.Counter(tokens)
- num_types = len(types_freqs)
+def honores_stat(main, text):
+ types_freqs = collections.Counter(text.get_tokens_flat())
freqs_nums_types = collections.Counter(types_freqs.values())
- if (denominator := 1 - freqs_nums_types[1] / num_types):
- r = 100 * numpy.log(num_tokens / denominator)
+ if (denominator := 1 - freqs_nums_types[1] / text.num_types):
+ r = 100 * numpy.log(text.num_tokens / denominator)
else:
r = 0
return r
+# Lexical Density
+# Reference: Halliday, M. A. K. (1989). Spoken and written language (2nd ed., p. 64).
+def lexical_density(main, text):
+ if text.lang in main.settings_global['pos_taggers']:
+ wl_pos_tagging.wl_pos_tag_universal(main, text.get_tokens_flat(), lang = text.lang, tagged = text.tagged)
+
+ num_content_words = sum((1 for token in text.get_tokens_flat() if token.content_function == _tr('wl_measures_lexical_density_diversity', 'Content words')))
+ num_tokens = text.num_tokens
+
+ lexical_density = num_content_words / num_tokens if num_tokens else 0
+ else:
+ lexical_density = 'no_support'
+
+ return lexical_density
+
# LogTTR
# Herdan:
# Herdan, G. (1960). Type-token mathematics: A textbook of mathematical linguistics (p. 28). Mouton.
@@ -137,22 +144,19 @@ def honores_stat(main, tokens):
# Dugast, D. (1978). Sur quoi se fonde la notion d’étendue théoretique du vocabulaire?. Le Français Moderne, 46, 25–32.
# Dugast, D. (1979). Vocabulaire et stylistique: I théâtre et dialogue, travaux de linguistique quantitative. Slatkine.
# Malvern, D., Richards, B., Chipere, N., & Durán, P. (2004). Lexical diversity and language development: Quantification and assessment (p. 28). Palgrave Macmillan.
-def logttr(main, tokens):
- variant = main.settings_custom['measures']['lexical_diversity']['logttr']['variant']
-
- num_types = len(set(tokens))
- num_tokens = len(tokens)
+def logttr(main, text):
+ variant = main.settings_custom['measures']['lexical_density_diversity']['logttr']['variant']
if variant == 'Herdan':
- logttr = numpy.log(num_types) / numpy.log(num_tokens)
+ logttr = numpy.log(text.num_types) / numpy.log(text.num_tokens)
elif variant == 'Somers':
- logttr = numpy.log(numpy.log(num_types)) / numpy.log(numpy.log(num_tokens))
+ logttr = numpy.log(numpy.log(text.num_types)) / numpy.log(numpy.log(text.num_tokens))
elif variant == 'Rubet':
- logttr = numpy.log(num_types) / numpy.log(numpy.log(num_tokens))
+ logttr = numpy.log(text.num_types) / numpy.log(numpy.log(text.num_tokens))
elif variant == 'Maas':
- logttr = (numpy.log(num_tokens) - numpy.log(num_types)) / (numpy.log(num_tokens) ** 2)
+ logttr = (numpy.log(text.num_tokens) - numpy.log(text.num_types)) / (numpy.log(text.num_tokens) ** 2)
elif variant == 'Dugast':
- logttr = (numpy.log(num_tokens) ** 2) / (numpy.log(num_tokens) - numpy.log(num_types))
+ logttr = (numpy.log(text.num_tokens) ** 2) / (numpy.log(text.num_tokens) - numpy.log(text.num_types))
return logttr
@@ -160,12 +164,12 @@ def logttr(main, tokens):
# References:
# Johnson, W. (1944). Studies in language behavior: I. a program of research. Psychological Monographs, 56(2), 1–15. https://doi.org/10.1037/h0093508
# McCarthy, P. M. (2005). An assessment of the range and usefulness of lexical diversity measures and the potential of the measure of textual, lexical diversity (MTLD) [Doctoral dissertation, The University of Memphis] (p. 37). ProQuest Dissertations and Theses Global.
-def msttr(main, tokens):
- num_tokens_seg = main.settings_custom['measures']['lexical_diversity']['msttr']['num_tokens_in_each_seg']
+def msttr(main, text):
+ num_tokens_seg = main.settings_custom['measures']['lexical_density_diversity']['msttr']['num_tokens_in_each_seg']
ttrs = [
len(set(tokens_seg)) / num_tokens_seg
- for tokens_seg in wl_nlp_utils.to_sections_unequal(tokens, num_tokens_seg)
+ for tokens_seg in wl_nlp_utils.to_sections_unequal(text.get_tokens_flat(), num_tokens_seg)
# Discard the last segment of text if its length is shorter than other segments
if len(tokens_seg) == num_tokens_seg
]
@@ -181,10 +185,10 @@ def msttr(main, tokens):
# References:
# McCarthy, P. M. (2005). An assessment of the range and usefulness of lexical diversity measures and the potential of the measure of textual, lexical diversity (MTLD) [Doctoral dissertation, The University of Memphis] (pp. 95–96, 99–100). ProQuest Dissertations and Theses Global.
# McCarthy, P. M., & Jarvis, S. (2010). MTLD, vocd-D, and HD-D: A validation study of sophisticated approaches to lexical diversity assessment. Behavior Research Methods, 42(2), 381–392. https://doi.org/10.3758/BRM.42.2.381
-def mtld(main, tokens):
+def mtld(main, text):
mtlds = numpy.empty(shape = 2)
- factor_size = main.settings_custom['measures']['lexical_diversity']['mtld']['factor_size']
- num_tokens = len(tokens)
+ factor_size = main.settings_custom['measures']['lexical_density_diversity']['mtld']['factor_size']
+ tokens = text.get_tokens_flat()
for i in range(2):
num_factors = 0
@@ -204,12 +208,12 @@ def mtld(main, tokens):
counter.clear()
# The last incomplete factor
- elif j == num_tokens - 1:
+ elif j == text.num_tokens - 1:
if factor_size < 1:
num_factors += (1 - ttr) / (1 - factor_size)
if num_factors:
- mtlds[i] = num_tokens / num_factors
+ mtlds[i] = text.num_tokens / num_factors
else:
mtlds[i] = 0
@@ -217,12 +221,12 @@ def mtld(main, tokens):
# Moving-average TTR
# Reference: Covington, M. A., & McFall, J. D. (2010). Cutting the Gordian knot: The moving-average type-token ratio (MATTR). Journal of Quantitative Linguistics, 17(2), 94–100. https://doi.org/10.1080/09296171003643098
-def mattr(main, tokens):
- window_size = main.settings_custom['measures']['lexical_diversity']['mattr']['window_size']
+def mattr(main, text):
+ window_size = main.settings_custom['measures']['lexical_density_diversity']['mattr']['window_size']
- num_tokens = len(tokens)
- num_windows = max(1, num_tokens - window_size + 1)
+ num_windows = max(1, text.num_tokens - window_size + 1)
ttrs = numpy.empty(shape = num_windows)
+ tokens = text.get_tokens_flat()
counter = collections.Counter(tokens[:window_size])
@@ -244,15 +248,14 @@ def mattr(main, tokens):
# Popescu-Mačutek-Altmann's B₁/B₂/B₃/B₄/B₅
# Reference: Popescu I.-I., Mačutek, J, & Altmann, G. (2008). Word frequency and arc length. Glottometrics, 17, 18–42.
-def popescu_macutek_altmanns_b1_b2_b3_b4_b5(main, tokens):
- types_freqs = collections.Counter(tokens)
- num_types = len(types_freqs)
+def popescu_macutek_altmanns_b1_b2_b3_b4_b5(main, text):
+ types_freqs = collections.Counter(text.get_tokens_flat())
freqs = numpy.array(sorted(types_freqs.values(), reverse = True))
freqs_nums_types = collections.Counter(types_freqs.values())
l = numpy.sum(numpy.sqrt(numpy.square(freqs[:-1] - freqs[1:]) + 1))
- l_min = numpy.sqrt(numpy.square(num_types - 1) + numpy.square(freqs[0] - 1))
- l_max = numpy.sqrt(numpy.square(freqs[0] - 1) + 1) + num_types - 2
+ l_min = numpy.sqrt(numpy.square(text.num_types - 1) + numpy.square(freqs[0] - 1))
+ l_max = numpy.sqrt(numpy.square(freqs[0] - 1) + 1) + text.num_types - 2
b1 = l / l_max
@@ -261,7 +264,7 @@ def popescu_macutek_altmanns_b1_b2_b3_b4_b5(main, tokens):
else:
b2 = 0
- b3 = (num_types - 1) / l
+ b3 = (text.num_types - 1) / l
b4 = (freqs[0] - 1) / l
b5 = freqs_nums_types[1] / l
@@ -269,12 +272,10 @@ def popescu_macutek_altmanns_b1_b2_b3_b4_b5(main, tokens):
# Popescu's R₁
# Reference: Popescu, I.-I. (2009). Word frequency studies (pp. 18, 30, 33). Mouton de Gruyter.
-def popescus_r1(main, tokens):
- num_tokens = len(tokens)
- types_freqs = collections.Counter(tokens)
- num_types = len(types_freqs)
- ranks = numpy.empty(shape = num_types)
- freqs = numpy.empty(shape = num_types)
+def popescus_r1(main, text):
+ types_freqs = collections.Counter(text.get_tokens_flat())
+ ranks = numpy.empty(shape = text.num_types)
+ freqs = numpy.empty(shape = text.num_types)
for i, freq in enumerate(sorted(types_freqs.values(), reverse = True)):
ranks[i] = i + 1
@@ -298,16 +299,15 @@ def popescus_r1(main, tokens):
r_min = ranks[i_min]
h = (c_min * r_max - c_max * r_min) / (c_min - c_max)
- f_h = numpy.sum(freqs[:int(numpy.floor(h))]) / num_tokens
- r1 = 1 - (f_h - numpy.square(h) / (2 * num_tokens))
+ f_h = numpy.sum(freqs[:int(numpy.floor(h))]) / text.num_tokens
+ r1 = 1 - (f_h - numpy.square(h) / (2 * text.num_tokens))
return r1
# Popescu's R₂
# Reference: Popescu, I.-I. (2009). Word frequency studies (pp. 35–36, 38). Mouton de Gruyter.
-def popescus_r2(main, tokens):
- num_types_all = len(set(tokens))
- types_freqs = collections.Counter(tokens)
+def popescus_r2(main, text):
+ types_freqs = collections.Counter(text.get_tokens_flat())
freqs_nums_types = sorted(collections.Counter(types_freqs.values()).items())
freqs = numpy.array([freq for freq, _ in freqs_nums_types])
nums_types = numpy.array([num_types for _, num_types in freqs_nums_types])
@@ -334,24 +334,22 @@ def popescus_r2(main, tokens):
else:
k = 0
- g_k = numpy.sum([num_types for freq, num_types in freqs_nums_types if freq <= numpy.floor(k)]) / num_types_all
- r2 = g_k - numpy.square(k) / (2 * num_types_all)
+ g_k = numpy.sum([num_types for freq, num_types in freqs_nums_types if freq <= numpy.floor(k)]) / text.num_types
+ r2 = g_k - numpy.square(k) / (2 * text.num_types)
return r2
# Popescu's R₃
# Reference: Popescu, I.-I. (2009). Word frequency studies (pp. 48–49, 53). Mouton de Gruyter.
-def popescus_r3(main, tokens):
- num_tokens = len(tokens)
- num_types = len(set(tokens))
- types_freqs = collections.Counter(tokens)
+def popescus_r3(main, text):
+ types_freqs = collections.Counter(text.get_tokens_flat())
ranks_freqs = [
(i + 1, freq)
for i, freq in enumerate(sorted(types_freqs.values(), reverse = True))
]
- rs_rel = numpy.empty(shape = num_types)
- fs_rel = numpy.empty(shape = num_types)
+ rs_rel = numpy.empty(shape = text.num_types)
+ fs_rel = numpy.empty(shape = text.num_types)
freq_cum = 0
for i, (rank, freq) in enumerate(ranks_freqs):
@@ -360,8 +358,8 @@ def popescus_r3(main, tokens):
rs_rel[i] = rank
fs_rel[i] = freq_cum
- rs_rel /= num_types
- fs_rel /= num_tokens
+ rs_rel /= text.num_types
+ fs_rel /= text.num_tokens
drs = numpy.sqrt(numpy.square(rs_rel) + numpy.square(1 - fs_rel))
m = numpy.argmin(drs) + 1 # m refers to rank
@@ -372,39 +370,35 @@ def popescus_r3(main, tokens):
# Popescu's R₄
# Reference: Popescu, I.-I. (2009). Word frequency studies (p. 57). Mouton de Gruyter.
-def popescus_r4(main, tokens):
- num_tokens = len(tokens)
- num_types = len(set(tokens))
- types_freqs = collections.Counter(tokens)
+def popescus_r4(main, text):
+ types_freqs = collections.Counter(text.get_tokens_flat())
- ranks = numpy.empty(shape = num_types)
- freqs = numpy.empty(shape = num_types)
+ ranks = numpy.empty(shape = text.num_types)
+ freqs = numpy.empty(shape = text.num_types)
for i, freq in enumerate(sorted(types_freqs.values(), reverse = True)):
ranks[i] = i + 1
freqs[i] = freq
- r4 = 1 - (num_types + 1 - 2 / num_tokens * numpy.sum(ranks * freqs)) / num_types
+ r4 = 1 - (text.num_types + 1 - 2 / text.num_tokens * numpy.sum(ranks * freqs)) / text.num_types
return r4
# Repeat Rate
# Reference: Popescu, I.-I. (2009). Word frequency studies (p. 166). Mouton de Gruyter.
-def repeat_rate(main, tokens):
- use_data = main.settings_custom['measures']['lexical_diversity']['repeat_rate']['use_data']
+def repeat_rate(main, text):
+ use_data = main.settings_custom['measures']['lexical_density_diversity']['repeat_rate']['use_data']
- num_tokens = len(tokens)
- num_types = len(set(tokens))
- types_freqs = collections.Counter(tokens)
+ types_freqs = collections.Counter(text.get_tokens_flat())
- if use_data == _tr('wl_measures_lexical_diversity', 'Rank-frequency distribution'):
+ if use_data == _tr('wl_measures_lexical_density_diversity', 'Rank-frequency distribution'):
freqs = numpy.array(list(types_freqs.values()))
- rr = numpy.sum(numpy.square(freqs)) / numpy.square(num_tokens)
- elif use_data == _tr('wl_measures_lexical_diversity', 'Frequency spectrum'):
+ rr = numpy.sum(numpy.square(freqs)) / numpy.square(text.num_tokens)
+ elif use_data == _tr('wl_measures_lexical_density_diversity', 'Frequency spectrum'):
nums_types = numpy.array(list(collections.Counter(types_freqs.values()).values()))
- rr = numpy.sum(numpy.square(nums_types)) / numpy.square(num_types)
+ rr = numpy.sum(numpy.square(nums_types)) / numpy.square(text.num_types)
return rr
@@ -412,24 +406,22 @@ def repeat_rate(main, tokens):
# References:
# Guiraud, P. (1954). Les caractères statistiques du vocabulaire: Essai de méthodologie. Presses universitaires de France.
# Malvern, D., Richards, B., Chipere, N., & Durán, P. (2004). Lexical diversity and language development: Quantification and assessment (p. 26). Palgrave Macmillan.
-def rttr(main, tokens):
- return len(set(tokens)) / numpy.sqrt(len(tokens))
+def rttr(main, text):
+ return text.num_types / numpy.sqrt(text.num_tokens)
# Shannon Entropy
# Reference: Popescu, I.-I. (2009). Word frequency studies (p. 173). Mouton de Gruyter.
-def shannon_entropy(main, tokens):
- use_data = main.settings_custom['measures']['lexical_diversity']['shannon_entropy']['use_data']
+def shannon_entropy(main, text):
+ use_data = main.settings_custom['measures']['lexical_density_diversity']['shannon_entropy']['use_data']
- num_tokens = len(tokens)
- num_types = len(set(tokens))
- types_freqs = collections.Counter(tokens)
+ types_freqs = collections.Counter(text.get_tokens_flat())
- if use_data == _tr('wl_measures_lexical_diversity', 'Rank-frequency distribution'):
+ if use_data == _tr('wl_measures_lexical_density_diversity', 'Rank-frequency distribution'):
freqs = numpy.array(list(types_freqs.values()))
- ps = freqs / num_tokens
- elif use_data == _tr('wl_measures_lexical_diversity', 'Frequency spectrum'):
+ ps = freqs / text.num_tokens
+ elif use_data == _tr('wl_measures_lexical_density_diversity', 'Frequency spectrum'):
nums_types = numpy.array(list(collections.Counter(types_freqs.values()).values()))
- ps = nums_types / num_types
+ ps = nums_types / text.num_types
h = -numpy.sum(ps * numpy.log2(ps))
@@ -437,37 +429,36 @@ def shannon_entropy(main, tokens):
# Simpson's l
# Reference: Simpson, E. H. (1949). Measurement of diversity. Nature, 163, p. 688. https://doi.org/10.1038/163688a0
-def simpsons_l(main, tokens):
- num_tokens = len(tokens)
- types_freqs = collections.Counter(tokens)
+def simpsons_l(main, text):
+ types_freqs = collections.Counter(text.get_tokens_flat())
freqs_nums_types = collections.Counter(types_freqs.values())
freqs = numpy.array(list(freqs_nums_types))
nums_types = numpy.array(list(freqs_nums_types.values()))
s2 = numpy.sum(nums_types * numpy.square(freqs))
- l = (s2 - num_tokens) / (num_tokens * (num_tokens - 1))
+ l = (s2 - text.num_tokens) / (text.num_tokens * (text.num_tokens - 1))
return l
# Type-token Ratio
# Reference: Johnson, W. (1944). Studies in language behavior: I. a program of research. Psychological Monographs, 56(2), 1–15. https://doi.org/10.1037/h0093508
-def ttr(main, tokens):
- return len(set(tokens)) / len(tokens)
+def ttr(main, text):
+ return text.num_types / text.num_tokens
# vocd-D
# Reference: Malvern, D., Richards, B., Chipere, N., & Durán, P. (2004). Lexical diversity and language development: Quantification and assessment (pp. 51, 56–57). Palgrave Macmillan.
-def vocdd(main, tokens):
+def vocdd(main, text):
def ttr(n, d):
return (d / n) * (numpy.sqrt(1 + 2 * n / d) - 1)
- num_tokens = len(tokens)
+ tokens = text.get_tokens_flat()
ttr_ys = numpy.empty(shape = 16)
for i, n in enumerate(range(35, 51)):
ttrs = numpy.empty(shape = 100)
for j in range(100):
- if n <= num_tokens:
+ if n <= text.num_tokens:
sample = random.sample(tokens, k = n)
else:
sample = tokens
@@ -486,31 +477,29 @@ def ttr(n, d):
# Yule's Characteristic K
# Reference: Yule, G. U. (1944). The statistical study of literary vocabulary (pp. 52–53). Cambridge University Press.
-def yules_characteristic_k(main, tokens):
- num_tokens = len(tokens)
- types_freqs = collections.Counter(tokens)
+def yules_characteristic_k(main, text):
+ types_freqs = collections.Counter(text.get_tokens_flat())
freqs_nums_types = collections.Counter(types_freqs.values())
freqs = numpy.array(list(freqs_nums_types))
nums_types = numpy.array(list(freqs_nums_types.values()))
s2 = numpy.sum(nums_types * numpy.square(freqs))
- k = 10000 * ((s2 - num_tokens) / (num_tokens ** 2))
+ k = 10000 * ((s2 - text.num_tokens) / (text.num_tokens ** 2))
return k
# Yule's Index of Diversity
# Reference: Williams, C. B. (1970). Style and vocabulary: Numerical studies (p. 100). Griffin.
-def yules_index_of_diversity(main, tokens):
- num_tokens = len(tokens)
- types_freqs = collections.Counter(tokens)
+def yules_index_of_diversity(main, text):
+ types_freqs = collections.Counter(text.get_tokens_flat())
freqs_nums_types = collections.Counter(types_freqs.values())
freqs = numpy.array(list(freqs_nums_types))
nums_types = numpy.array(list(freqs_nums_types.values()))
s2 = numpy.sum(nums_types * numpy.square(freqs))
- if (divisor := s2 - num_tokens):
- index_of_diversity = (num_tokens ** 2) / divisor
+ if (divisor := s2 - text.num_tokens):
+ index_of_diversity = (text.num_tokens ** 2) / divisor
else:
index_of_diversity = 0
diff --git a/wordless/wl_measures/wl_measures_readability.py b/wordless/wl_measures/wl_measures_readability.py
index 7a7be94a8..b546f565c 100644
--- a/wordless/wl_measures/wl_measures_readability.py
+++ b/wordless/wl_measures/wl_measures_readability.py
@@ -17,6 +17,7 @@
# ----------------------------------------------------------------------
import bisect
+import copy
import math
import random
import re
@@ -42,11 +43,11 @@ def get_nums(main, text):
text.words_multilevel[-1].append([])
for sentence_seg in sentence:
- text.words_multilevel[-1][-1].append(wl_texts.to_tokens([
+ text.words_multilevel[-1][-1].append(copy.deepcopy([
token
for token in sentence_seg
if wl_checks_tokens.is_word_alphanumeric(token)
- ], lang = text.lang))
+ ]))
text.sentences = [
list(wl_misc.flatten_list(sentence))
@@ -63,9 +64,8 @@ def get_nums(main, text):
# Number of syllables
if 'num_syls' not in text.__dict__ and text.lang in main.settings_global['syl_tokenizers']:
- text.words_flat = wl_syl_tokenization.wl_syl_tokenize(main, text.words_flat, lang = text.lang)
- text.syls_words = wl_texts.get_token_properties(text.words_flat, 'syls')
- text.num_syls = sum((len(syls) for syls in text.syls_words))
+ wl_syl_tokenization.wl_syl_tokenize(main, text.words_flat, lang = text.lang)
+ text.num_syls = sum((len(word.syls) for word in text.words_flat))
# Number of characters
if 'num_chars_all' not in text.__dict__:
@@ -99,34 +99,31 @@ def get_num_words_ltrs(words, len_min = 1, len_max = None):
if len([char for char in word if char.isalpha()]) >= len_min
])
-def get_num_words_syls(syls_words, len_min = 1, len_max = None):
+def get_num_words_syls(words, len_min = 1, len_max = None):
if len_max:
return sum((
1
- for syls in syls_words
- if len_min <= len(syls) <= len_max
+ for word in words
+ if len_min <= len(word.syls) <= len_max
))
else:
return sum((
1
- for syls in syls_words
- if len(syls) >= len_min
+ for word in words
+ if len(word.syls) >= len_min
))
-def get_num_words_pos_tags(main, words, lang, pos_tag):
- words = wl_pos_tagging.wl_pos_tag(main, words, lang = lang, tagset = 'universal', force = True)
-
- return sum((1 for word in words if pos_tag in word.tag))
-
-def get_nums_words_pos_tags(main, words, lang, pos_tags):
- nums = []
+def pos_tag_words(main, text):
+ text.words_flat = wl_pos_tagging.wl_pos_tag_universal(main, text.words_flat, lang = text.lang, tagged = text.tagged)
- words = wl_pos_tagging.wl_pos_tag(main, words, lang = lang, tagset = 'universal', force = True)
+def get_num_words_pos_tag(words, pos_tag):
+ return sum((1 for word in words if pos_tag in word.tag_universal.split('/')))
- for pos_tag in pos_tags:
- nums.append(sum((1 for word in words if pos_tag in word.tag)))
-
- return nums
+def get_nums_words_pos_tags(words, pos_tags):
+ return [
+ get_num_words_pos_tag(words, pos_tag)
+ for pos_tag in pos_tags
+ ]
def get_num_words_outside_list(words, wordlist, use_word_types = False):
words_inside_wordlist = set()
@@ -189,6 +186,7 @@ def rd(main, text):
variant = main.settings_custom['measures']['readability']['rd']['variant']
if variant == _tr('wl_measures_readability', 'Policy one'):
+
rd = (
4.41434307 * (text.num_chars_alpha / text.num_words)
- 13.46873475
@@ -310,40 +308,52 @@ def coleman_liau_index(main, text):
# Coleman's Readability Formula
# Reference: Liau, T. L., Bassin, C. B., Martin, C. J., & Coleman, E. B. (1976). Modification of the Coleman readability formulas. Journal of Reading Behavior, 8(4), 381–386. https://journals.sagepub.com/doi/pdf/10.1080/10862967609547193
def colemans_readability_formula(main, text):
- if text.lang in main.settings_global['syl_tokenizers'] and text.lang in main.settings_global['pos_taggers']:
+ variant = main.settings_custom['measures']['readability']['colemans_readability_formula']['variant']
+
+ if (
+ text.lang in main.settings_global['syl_tokenizers']
+ and (
+ variant in ['1', '2']
+ or (variant in ['3', '4'] and text.lang in main.settings_global['pos_taggers'])
+ )
+ ):
text = get_nums(main, text)
if text.num_words:
- variant = main.settings_custom['measures']['readability']['colemans_readability_formula']['variant']
- num_words_1_syl = get_num_words_syls(text.syls_words, len_min = 1, len_max = 1)
+ num_words_1_syl = get_num_words_syls(text.words_flat, len_min = 1, len_max = 1)
- if variant == '1':
- cloze_pct = (
- 1.29 * (num_words_1_syl / text.num_words * 100)
- - 38.45
- )
- elif variant == '2':
- cloze_pct = (
- 1.16 * (num_words_1_syl / text.num_words * 100)
- + 1.48 * (text.num_sentences / text.num_words * 100)
- - 37.95
- )
- elif variant in ['3', '4']:
- num_prons, num_preps = get_nums_words_pos_tags( # pylint: disable=unbalanced-tuple-unpacking
- main,
- words = text.words_flat,
- lang = text.lang,
- pos_tags = ['PRON', 'ADP']
- )
+ match variant:
+ case '1':
+ cloze_pct = (
+ 1.29 * (num_words_1_syl / text.num_words * 100)
+ - 38.45
+ )
+ case '2':
+ cloze_pct = (
+ 1.16 * (num_words_1_syl / text.num_words * 100)
+ + 1.48 * (text.num_sentences / text.num_words * 100)
+ - 37.95
+ )
+ case '3':
+ pos_tag_words(main, text)
+ num_prons = get_num_words_pos_tag(
+ words = text.words_flat,
+ pos_tag = 'PRON'
+ )
- if variant == '3':
cloze_pct = (
1.07 * (num_words_1_syl / text.num_words * 100)
+ 1.18 * (text.num_sentences / text.num_words * 100)
+ 0.76 * (num_prons / text.num_words * 100)
- 34.02
)
- elif variant == '4':
+ case '4':
+ pos_tag_words(main, text)
+ num_prons, num_preps = get_nums_words_pos_tags(
+ words = text.words_flat,
+ pos_tags = ['PRON', 'ADP']
+ )
+
cloze_pct = (
1.04 * (num_words_1_syl / text.num_words * 100)
+ 1.06 * (text.num_sentences / text.num_words * 100)
@@ -650,7 +660,7 @@ def re_farr_jenkins_paterson(main, text):
text = get_nums(main, text)
if text.num_words and text.num_sentences:
- num_words_1_syl = get_num_words_syls(text.syls_words, len_min = 1, len_max = 1)
+ num_words_1_syl = get_num_words_syls(text.words_flat, len_min = 1, len_max = 1)
if main.settings_custom['measures']['readability']['re_farr_jenkins_paterson']['use_powers_sumner_kearl_variant']:
re = (
@@ -679,7 +689,7 @@ def rgl(main, text):
if text.num_words >= 150:
sample_start = random.randint(0, text.num_words - 150)
- sample = text.syls_words[sample_start : sample_start + 150]
+ sample = text.words_flat[sample_start : sample_start + 150]
num_words_1_syl = get_num_words_syls(sample, len_min = 1, len_max = 1)
rgl = 20.43 - 0.11 * num_words_1_syl
@@ -789,21 +799,14 @@ def fog_index(main, text):
_tr('wl_measures_readability', 'Original'),
'Powers-Sumner-Kearl'
]:
- words_tagged = wl_pos_tagging.wl_pos_tag(
- main, text.words_flat,
- lang = text.lang,
- tagset = 'universal',
- force = True
- )
-
- for syls, word in zip(text.syls_words, words_tagged):
- tag = word.tag
+ pos_tag_words(main, text)
+ for word in text.words_flat:
if (
- 'PROPN' not in tag
+ 'PROPN' not in word.tag_universal.split('/')
and (
- (len(syls) == 3 and not word.endswith('ed') and not word.endswith('es'))
- or len(syls) > 3
+ (len(word.syls) == 3 and not word.endswith('ed') and not word.endswith('es'))
+ or len(word.syls) > 3
)
):
num_hard_words += 1
@@ -820,19 +823,24 @@ def fog_index(main, text):
+ 0.0984 * (num_hard_words / text.num_words * 100)
)
elif variant_eng == _tr('wl_measures_readability', 'Navy'):
- num_words_3_plus_syls = get_num_words_syls(text.syls_words, len_min = 3)
+ num_words_3_plus_syls = get_num_words_syls(text.words_flat, len_min = 3)
fog_index = (
((text.num_words + 2 * num_words_3_plus_syls) / text.num_sentences - 3)
/ 2
)
elif text.lang == 'pol':
- words_tagged = wl_pos_tagging.wl_pos_tag(main, text.words_flat, lang = 'pol', tagset = 'universal')
- lemmas = wl_lemmatization.wl_lemmatize(main, text.words_flat, lang = 'pol')
- syls_words = wl_syl_tokenization.wl_syl_tokenize(main, lemmas, lang = 'pol')
+ pos_tag_words(main, text)
+ # Count number of syllables of word lemmas instead of original words
+ wl_lemmatization.wl_lemmatize(main, text.words_flat, lang = 'pol')
+ lemmas_syls = wl_syl_tokenization.wl_syl_tokenize(
+ main,
+ wl_texts.to_tokens(wl_texts.get_token_properties(text.words_flat, 'lemma'), lang = 'pol'),
+ lang = 'pol'
+ )
- for syls, (word, tag) in zip(syls_words, words_tagged):
- if len(syls) > 4 and 'PROPN' not in tag:
+ for word, syls in zip(text.words_flat, lemmas_syls):
+ if len(syls) > 4 and 'PROPN' not in word.tag_universal.split('/'):
num_hard_words += 1
fog_index = (
@@ -940,10 +948,9 @@ def lorge_readability_index(main, text):
text = get_nums(main, text)
if text.num_sentences and text.num_words:
- num_preps = get_num_words_pos_tags(
- main,
+ pos_tag_words(main, text)
+ num_preps = get_num_words_pos_tag(
words = text.words_flat,
- lang = text.lang,
pos_tag = 'ADP'
)
num_hard_words = get_num_words_outside_list(
@@ -1023,7 +1030,7 @@ def nwl(main, text):
sw = get_num_words_outside_list(text.words_flat, wordlist = 'bamberger_vanecek', use_word_types = True) / text.num_word_types * 100
s_100 = text.num_sentences / text.num_words * 100
- ms = get_num_words_syls(text.syls_words, len_min = 3) / text.num_words * 100
+ ms = get_num_words_syls(text.words_flat, len_min = 3) / text.num_words * 100
sl = text.num_words / text.num_sentences
iw = get_num_words_ltrs(text.words_flat, len_min = 7) / text.num_words * 100
@@ -1049,10 +1056,10 @@ def nws(main, text):
if text.num_words and text.num_sentences:
variant = main.settings_custom['measures']['readability']['nws']['variant']
- ms = get_num_words_syls(text.syls_words, len_min = 3) / text.num_words * 100
+ ms = get_num_words_syls(text.words_flat, len_min = 3) / text.num_words * 100
sl = text.num_words / text.num_sentences
iw = get_num_words_ltrs(text.words_flat, len_min = 7) / text.num_words * 100
- es = get_num_words_syls(text.syls_words, len_min = 1, len_max = 1) / text.num_words * 100
+ es = get_num_words_syls(text.words_flat, len_min = 1, len_max = 1) / text.num_words * 100
if variant == '1':
nws = 0.1935 * ms + 0.1672 * sl + 0.1297 * iw - 0.0327 * es - 0.875
@@ -1178,12 +1185,9 @@ def smog_grade(main, text):
num_words_3_plus_syls = 0
for sentence in sample:
- syls_words = wl_texts.get_token_properties(
- wl_syl_tokenization.wl_syl_tokenize(main, sentence, lang = text.lang),
- 'syls'
- )
+ sentence = wl_syl_tokenization.wl_syl_tokenize(main, sentence, lang = text.lang)
- num_words_3_plus_syls += get_num_words_syls(syls_words, len_min = 3)
+ num_words_3_plus_syls += get_num_words_syls(sentence, len_min = 3)
if text.lang.startswith('deu_'):
g = numpy.sqrt(num_words_3_plus_syls / text.num_sentences * 30) - 2
@@ -1252,12 +1256,12 @@ def strain_index(main, text):
num_syls = 0
for sentence in text.sentences[:3]:
- syls_words = wl_texts.get_token_properties(
+ words_syls = wl_texts.get_token_properties(
wl_syl_tokenization.wl_syl_tokenize(main, sentence, lang = text.lang),
'syls'
)
- num_syls += sum((len(syls) for syls in syls_words))
+ num_syls += sum((len(syls) for syls in words_syls))
strain_index = num_syls / 10
else:
@@ -1276,17 +1280,17 @@ def trankle_bailers_readability_formula(main, text):
text = get_nums(main, text)
if text.num_words >= 100:
+ pos_tag_words(main, text)
+
sample_start = random.randint(0, text.num_words - 100)
sample = text.words_flat[sample_start : sample_start + 100]
num_chars_alnum = sum((1 for token in sample for char in token if char.isalnum()))
num_sentences = get_num_sentences_sample(text, sample, sample_start)
- num_preps, num_conjs = get_nums_words_pos_tags( # pylint: disable=unbalanced-tuple-unpacking
- main,
+ num_preps, num_cconjs, num_sconjs = get_nums_words_pos_tags( # pylint: disable=unbalanced-tuple-unpacking
words = sample,
- lang = text.lang,
- pos_tags = ['ADP', 'CONJ']
+ pos_tags = ['ADP', 'CCONJ', 'SCONJ']
)
variant = main.settings_custom['measures']['readability']['trankle_bailers_readability_formula']['variant']
@@ -1303,7 +1307,7 @@ def trankle_bailers_readability_formula(main, text):
234.1063
- numpy.log(num_chars_alnum / 100 + 1) * 96.11069
- num_preps * 2.05444
- - num_conjs * 1.02805
+ - (num_cconjs + num_sconjs) * 1.02805
)
else:
trankle_bailers = 'text_too_short'
@@ -1373,12 +1377,12 @@ def wheeler_smiths_readability_formula(main, text):
text = get_nums(main, text)
if text.num_words:
- num_units = len(wl_sentence_tokenization.wl_sentence_seg_split(
+ num_units = len(wl_sentence_tokenization.wl_sentence_seg_tokenize_tokens(
main,
- text = ' '.join(wl_misc.flatten_list(text.tokens_multilevel_with_puncs)),
+ tokens = wl_misc.flatten_list(text.tokens_multilevel_with_puncs),
terminators = UNIT_TERMINATORS
))
- num_words_2_syls = get_num_words_syls(text.syls_words, len_min = 2)
+ num_words_2_syls = get_num_words_syls(text.words_flat, len_min = 2)
wheeler_smith = (
(text.num_words / num_units)
diff --git a/wordless/wl_nlp/wl_lemmatization.py b/wordless/wl_nlp/wl_lemmatization.py
index 467f0da9d..002b8a903 100644
--- a/wordless/wl_nlp/wl_lemmatization.py
+++ b/wordless/wl_nlp/wl_lemmatization.py
@@ -132,15 +132,13 @@ def wl_lemmatize_text(main, inputs, lang, lemmatizer):
elif lemmatizer == 'nltk_wordnet':
word_net_lemmatizer = nltk.WordNetLemmatizer()
- for token in wl_pos_tagging.wl_pos_tag(
+ for token in wl_pos_tagging.wl_pos_tag_universal(
main, line,
- lang = 'eng_us',
- pos_tagger = 'nltk_perceptron_eng',
- tagset = 'universal'
+ lang = 'eng_us'
):
tokens.append(str(token))
- match token.tag[1:]:
+ match token.tag_universal:
case 'ADJ':
lemmas.append(word_net_lemmatizer.lemmatize(str(token), pos = nltk.corpus.wordnet.ADJ))
case 'NOUN' | 'PROPN':
@@ -255,13 +253,12 @@ def wl_lemmatize_tokens(main, inputs, lang, lemmatizer):
elif lemmatizer == 'nltk_wordnet':
word_net_lemmatizer = nltk.WordNetLemmatizer()
- for token in wl_pos_tagging.wl_pos_tag(
- main, wl_texts.to_tokens(tokens, lang = lang),
- lang = 'eng_us',
- pos_tagger = 'nltk_perceptron_eng',
- tagset = 'universal'
+ for token in wl_pos_tagging.wl_pos_tag_universal(
+ main,
+ inputs = wl_texts.to_tokens(tokens, lang = 'eng_us'),
+ lang = 'eng_us'
):
- match token.tag[1:]:
+ match token.tag_universal:
case 'ADJ':
lemmas.append(word_net_lemmatizer.lemmatize(str(token), pos = nltk.corpus.wordnet.ADJ))
case 'NOUN' | 'PROPN':
diff --git a/wordless/wl_nlp/wl_pos_tagging.py b/wordless/wl_nlp/wl_pos_tagging.py
index 977fea6ad..32b45b4df 100644
--- a/wordless/wl_nlp/wl_pos_tagging.py
+++ b/wordless/wl_nlp/wl_pos_tagging.py
@@ -16,9 +16,12 @@
# along with this program. If not, see .
# ----------------------------------------------------------------------
+import copy
+
import khmernltk
import laonlp
import nltk
+from PyQt5.QtCore import QCoreApplication
import pythainlp
import spacy
import underthesea
@@ -26,16 +29,32 @@
from wordless.wl_nlp import wl_nlp_utils, wl_texts, wl_word_tokenization
from wordless.wl_utils import wl_conversion
-UNIVERSAL_TAGSETS_SPACY = [
+_tr = QCoreApplication.translate
+
+UNIVERSAL_TAGSETS_SPACY = {
'spacy_cat', 'spacy_dan', 'spacy_fra', 'spacy_ell', 'spacy_mkd',
'spacy_nob', 'spacy_por', 'spacy_rus', 'spacy_spa', 'spacy_ukr'
-]
-UNIVERSAL_TAGSETS_STANZA = [
+}
+UNIVERSAL_TAGSETS_STANZA = {
'stanza_hye', 'stanza_hyw', 'stanza_eus', 'stanza_bxr', 'stanza_dan',
'stanza_fra', 'stanza_ell', 'stanza_heb', 'stanza_hun', 'stanza_lij',
'stanza_glv', 'stanza_mar', 'stanza_pcm', 'stanza_qpm', 'stanza_por',
'stanza_rus', 'stanza_san', 'stanza_snd', 'stanza_hsb', 'stanza_tel'
-]
+}
+
+def to_content_function(universal_pos_tag):
+ if universal_pos_tag in [
+ 'ADJ', 'ADV', 'INTJ', 'NOUN', 'PROPN', 'NUM', 'VERB', 'SYM', 'X',
+ 'NOUN/NUM', 'SYM/X'
+ ]:
+ return _tr('wl_pos_tagging', 'Content words')
+ elif universal_pos_tag in [
+ 'ADP', 'AUX', 'CONJ', 'CCONJ', 'SCONJ', 'DET', 'PART', 'PRON', 'PUNCT',
+ 'ADP/SCONJ', 'PUNCT/SYM'
+ ]:
+ return _tr('wl_pos_tagging', 'Function words')
+ else:
+ return None
def wl_pos_tag(main, inputs, lang, pos_tagger = 'default', tagset = 'default', force = False):
if (
@@ -69,6 +88,8 @@ def wl_pos_tag(main, inputs, lang, pos_tagger = 'default', tagset = 'default', f
tokenized = not isinstance(inputs, str)
)
+ tags_universal = []
+
if isinstance(inputs, str):
# spaCy
if pos_tagger.startswith('spacy_'):
@@ -89,6 +110,9 @@ def wl_pos_tag(main, inputs, lang, pos_tagger = 'default', tagset = 'default', f
tags.append(token.tag_)
elif tagset == 'universal':
tags.append(token.pos_)
+
+ if pos_tagger not in UNIVERSAL_TAGSETS_SPACY:
+ tags_universal.append(token.pos_)
# Stanza
elif pos_tagger.startswith('stanza_'):
if lang not in ['zho_cn', 'zho_tw', 'srp_latn']:
@@ -108,6 +132,9 @@ def wl_pos_tag(main, inputs, lang, pos_tagger = 'default', tagset = 'default', f
tags.append(token.xpos if token.xpos else token.upos)
elif tagset == 'universal':
tags.append(token.upos)
+
+ if pos_tagger not in UNIVERSAL_TAGSETS_STANZA:
+ tags_universal.append(token.upos)
else:
for line in inputs.splitlines():
tokens_tagged_line, tags_line = wl_pos_tag_text(main, line, lang, pos_tagger)
@@ -145,6 +172,9 @@ def wl_pos_tag(main, inputs, lang, pos_tagger = 'default', tagset = 'default', f
tags.append(token.tag_)
elif tagset == 'universal':
tags.append(token.pos_)
+
+ if pos_tagger not in UNIVERSAL_TAGSETS_SPACY:
+ tags_universal.append(token.pos_)
# Stanza
elif pos_tagger.startswith('stanza_'):
if lang not in ['zho_cn', 'zho_tw', 'srp_latn']:
@@ -166,6 +196,9 @@ def wl_pos_tag(main, inputs, lang, pos_tagger = 'default', tagset = 'default', f
tags.append(token.xpos if token.xpos else token.upos)
elif tagset == 'universal':
tags.append(token.upos)
+
+ if pos_tagger not in UNIVERSAL_TAGSETS_STANZA:
+ tags_universal.append(token.upos)
else:
for tokens in wl_nlp_utils.split_token_list(main, texts, pos_tagger):
results = wl_pos_tag_tokens(main, tokens, lang, pos_tagger)
@@ -173,51 +206,95 @@ def wl_pos_tag(main, inputs, lang, pos_tagger = 'default', tagset = 'default', f
texts_tagged.extend(results[0])
tags.extend(results[1])
- # Remove empty tokens (e.g. SudachiPy) and strip whitespace around tokens and tags
- tokens_tags = zip(texts_tagged.copy(), tags.copy())
- texts_tagged.clear()
- tags.clear()
+ if (
+ not pos_tagger.startswith(('spacy_', 'stanza_'))
+ or pos_tagger in UNIVERSAL_TAGSETS_SPACY | UNIVERSAL_TAGSETS_STANZA
+ ):
+ mappings = {
+ tag: tag_universal
+ for tag, tag_universal, _, _, _ in main.settings_custom['pos_tagging']['tagsets']['mapping_settings'][lang][pos_tagger]
+ }
- for token, tag in tokens_tags:
+ # Convert empty tags (to be removed later) to X
+ tags_universal = [(mappings[tag.strip()] if tag.strip() else 'X') for tag in tags]
+
+ # Remove empty tokens (e.g. SudachiPy) and strip whitespace around tokens and tags
+ for i, token in reversed(list(enumerate(texts_tagged))):
if (token_clean := token.strip()):
- texts_tagged.append(token_clean)
- tags.append(tag.strip())
+ texts_tagged[i] = token_clean
+ else:
+ del texts_tagged[i]
+ del tags[i]
+ del tags_universal[i]
if not isinstance(inputs, str):
tags = wl_nlp_utils.align_tokens(texts, texts_tagged, tags)
+ tags_universal = wl_nlp_utils.align_tokens(texts, texts_tagged, tags_universal)
+
+ # Convert to content/function words
+ if (
+ pos_tagger.startswith(('spacy_', 'stanza_'))
+ and pos_tagger not in UNIVERSAL_TAGSETS_SPACY | UNIVERSAL_TAGSETS_STANZA
+ ):
+ content_functions = [to_content_function(tag) for tag in tags_universal]
+ else:
+ mappings = {
+ tag: content_function
+ for tag, _, content_function, _, _ in main.settings_custom['pos_tagging']['tagsets']['mapping_settings'][lang][pos_tagger]
+ }
+
+ content_functions = [mappings[tag] for tag in tags]
# Convert to universal POS tags
if (
tagset == 'universal'
and (
- (
- not pos_tagger.startswith('spacy_')
- and not pos_tagger.startswith('stanza_')
- )
- or pos_tagger in UNIVERSAL_TAGSETS_SPACY
- or pos_tagger in UNIVERSAL_TAGSETS_STANZA
+ not pos_tagger.startswith(('spacy_', 'stanza_'))
+ or pos_tagger in UNIVERSAL_TAGSETS_SPACY | UNIVERSAL_TAGSETS_STANZA
)
):
- mappings = {
- tag: tag_universal
- for tag, tag_universal, _, _ in main.settings_custom['pos_tagging']['tagsets']['mapping_settings'][lang][pos_tagger]
- }
-
- tags = [mappings.get(tag, 'X') for tag in tags]
+ tags = tags_universal.copy()
# Add separators between tokens and tags
tags = [f'_{tag}' for tag in tags]
if isinstance(inputs, str):
- return wl_texts.to_tokens(texts_tagged, lang = lang, tags = tags)
+ return wl_texts.to_tokens(
+ texts_tagged,
+ lang = lang,
+ tags = tags,
+ tags_universal = tags_universal,
+ content_functions = content_functions
+ )
else:
tokens = wl_texts.combine_texts_properties(texts, token_properties)
wl_texts.set_token_properties(tokens, 'tag', tags)
+ wl_texts.set_token_properties(tokens, 'tag_universal', tags_universal)
+ wl_texts.set_token_properties(tokens, 'content_function', content_functions)
wl_texts.update_token_properties(inputs, tokens)
return inputs
+def wl_pos_tag_universal(main, inputs, lang, pos_tagger = 'default', tagged = False):
+ if (
+ isinstance(inputs, str)
+ or (
+ not isinstance(inputs, str)
+ and inputs
+ and inputs[0].tag_universal is None
+ )
+ ):
+ # Assign universal POS tags to tagged files without modifying original tags
+ if tagged:
+ tokens = wl_pos_tag(main, copy.deepcopy(inputs), lang, pos_tagger, force = True)
+ wl_texts.set_token_properties(inputs, 'tag_universal', wl_texts.get_token_properties(tokens, 'tag_universal'))
+ wl_texts.set_token_properties(inputs, 'content_function', wl_texts.get_token_properties(tokens, 'content_function'))
+ else:
+ inputs = wl_pos_tag(main, inputs, lang, pos_tagger)
+
+ return inputs
+
def wl_pos_tag_text(main, text, lang, pos_tagger):
tokens_tagged = []
tags = []
diff --git a/wordless/wl_nlp/wl_sentence_tokenization.py b/wordless/wl_nlp/wl_sentence_tokenization.py
index 3c2e10da3..870864298 100644
--- a/wordless/wl_nlp/wl_sentence_tokenization.py
+++ b/wordless/wl_nlp/wl_sentence_tokenization.py
@@ -209,7 +209,7 @@ def wl_sentence_tokenize(main, text, lang, sentence_tokenizer = 'default'):
def wl_sentence_split(main, text, terminators = SENTENCE_TERMINATORS):
return [
sentence.strip()
- for sentence in re.findall(fr'.+?[{terminators}][{terminators}\s]*|.+?$', text.strip())
+ for sentence in re.findall(fr'.+?[{terminators}]+\s|.+?$', text.strip())
]
# Reference: https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=[:Terminal_Punctuation=Yes:]
@@ -295,21 +295,13 @@ def wl_sentence_seg_tokenize(main, text, terminators = SENTENCE_SEG_TERMINATORS)
for sentence_seg in re.findall(fr'.+?[{terminators}]+|.+?$', text.strip())
]
-def wl_sentence_seg_split(main, text, terminators = SENTENCE_SEG_TERMINATORS):
- return [
- sentence_seg.strip()
- for sentence_seg in re.findall(fr'.+?[{terminators}][{terminators}\s]*|.+?$', text.strip())
- ]
-
REPLACEMENT_CHAR = '\uFFFF'
def wl_sentence_seg_tokenize_tokens(main, tokens, terminators = SENTENCE_SEG_TERMINATORS):
- sentence_segs = []
-
# Insert a replacement character between tokens to prevent text from being split within tokens
text = REPLACEMENT_CHAR.join(tokens)
- for sentence_seg in re.findall(fr'.+?[{terminators}]+{REPLACEMENT_CHAR}|.+?$', text.strip()):
- sentence_segs.append(wl_texts.clean_texts(sentence_seg.split(REPLACEMENT_CHAR)))
-
- return sentence_segs
+ return [
+ wl_texts.clean_texts(sentence_seg.split(REPLACEMENT_CHAR))
+ for sentence_seg in re.findall(fr'.+?[{terminators}]+{REPLACEMENT_CHAR}|.+?$', text.strip())
+ ]
diff --git a/wordless/wl_nlp/wl_texts.py b/wordless/wl_nlp/wl_texts.py
index 3c237e697..782edaea6 100644
--- a/wordless/wl_nlp/wl_texts.py
+++ b/wordless/wl_nlp/wl_texts.py
@@ -38,7 +38,7 @@ def __new__(cls, text, **kwargs):
def __init__(
self, text, lang = 'eng_us',
syls = None,
- tag = None,
+ tag = None, tag_universal = None, content_function = None,
lemma = None,
head = None, dependency_relation = None, dependency_len = None,
punc_mark = None
@@ -46,6 +46,8 @@ def __init__(
self.lang = lang
self.syls = syls
self.tag = tag
+ self.tag_universal = tag_universal
+ self.content_function = content_function
self.lemma = lemma
self.head = head
self.dependency_relation = dependency_relation
@@ -60,14 +62,16 @@ def __eq__(self, other):
def display_text(self, punc_mark = False):
if punc_mark:
- return str(self) + (self.punc_mark or '') + (self.tag or '')
+ return f"{self}{(self.punc_mark or '')}{self.tag or ''}"
else:
- return str(self) + (self.tag or '')
+ return f"{self}{self.tag or ''}"
def update_properties(self, token):
self.lang = token.lang
self.syls = token.syls
self.tag = token.tag
+ self.tag_universal = token.tag_universal
+ self.content_function = token.content_function
self.lemma = token.lemma
self.head = token.head
self.dependency_relation = token.dependency_relation
@@ -77,7 +81,7 @@ def update_properties(self, token):
def to_tokens(
texts, lang = 'eng_us',
syls_tokens = None,
- tags = None,
+ tags = None, tags_universal = None, content_functions = None,
lemmas = None,
heads = None, dependency_relations = None, dependency_lens = None,
punc_marks = None
@@ -86,6 +90,8 @@ def to_tokens(
syls_tokens = syls_tokens or [None] * num_tokens
tags = tags or [None] * num_tokens
+ tags_universal = tags_universal or [None] * num_tokens
+ content_functions = content_functions or [None] * num_tokens
lemmas = lemmas or [None] * num_tokens
heads = heads or [None] * num_tokens
dependency_relations = dependency_relations or [None] * num_tokens
@@ -96,7 +102,7 @@ def to_tokens(
Wl_Token(
text, lang = lang,
syls = syls_tokens[i],
- tag = tags[i],
+ tag = tags[i], tag_universal = tags_universal[i], content_function = content_functions[i],
lemma = lemmas[i],
head = heads[i], dependency_relation = dependency_relations[i], dependency_len = dependency_lens[i],
punc_mark = punc_marks[i]
@@ -122,6 +128,8 @@ def split_texts_properties(tokens):
'lang': token.lang,
'syls': token.syls,
'tag': token.tag,
+ 'tag_universal': token.tag_universal,
+ 'content_function': token.content_function,
'lemma': token.lemma,
'head': token.head,
'dependency_relation': token.dependency_relation,
@@ -248,8 +256,11 @@ def __init__(self, main, file):
for sentence in wl_sentence_tokenization.wl_sentence_split(self.main, para):
self.tokens_multilevel[-1].append([])
- for sentence_seg in wl_sentence_tokenization.wl_sentence_seg_split(self.main, sentence):
- self.tokens_multilevel[-1][-1].append(sentence_seg.split())
+ for sentence_seg in wl_sentence_tokenization.wl_sentence_seg_tokenize_tokens(
+ self.main,
+ sentence.split()
+ ):
+ self.tokens_multilevel[-1][-1].append(sentence_seg)
# Tokenized & Tagged
elif self.tokenized and self.tagged:
for i, para in enumerate(text.splitlines()):
@@ -262,8 +273,11 @@ def __init__(self, main, file):
for sentence in wl_sentence_tokenization.wl_sentence_split(self.main, text_no_tags):
self.tokens_multilevel[-1].append([])
- for sentence_seg in wl_sentence_tokenization.wl_sentence_seg_split(self.main, sentence):
- self.tokens_multilevel[-1][-1].append(sentence_seg.split())
+ for sentence_seg in wl_sentence_tokenization.wl_sentence_seg_tokenize_tokens(
+ self.main,
+ sentence.split()
+ ):
+ self.tokens_multilevel[-1][-1].append(sentence_seg)
# Check if the first token in the text is a tag
if i == 0 and re.match(re_tags_start, para):
@@ -276,16 +290,16 @@ def __init__(self, main, file):
tags_tokens.append([])
# Extract tags
- tag_end = 0
+ tag_last_end = 0
for tag in re.finditer(re_tags, para):
- tags_tokens = self.add_tags_splitting(para[tag_end:tag.start()], tags_tokens)
+ tags_tokens = self.add_tags_splitting(para[tag_last_end:tag.start()], tags_tokens)
tags_tokens[-1].append(tag.group())
- tag_end = tag.end()
+ tag_last_end = tag.end()
# The last part of the text
- if (para := para[tag_end:]):
+ if (para := para[tag_last_end:]):
tags_tokens = self.add_tags_splitting(para, tags_tokens)
# Add empty tags for untagged files
@@ -369,8 +383,8 @@ def __init__(self, main, file):
i_tag += len_sentence_seg
- # Record number of tokens
- self.num_tokens = len(self.get_tokens_flat())
+ # Record number of tokens and types
+ self.update_num_tokens()
# Remove Wl_Main object from the text since it cannot be pickled
del self.main
@@ -396,6 +410,7 @@ def add_tags_splitting(self, text, tags):
def update_num_tokens(self):
self.num_tokens = len(self.get_tokens_flat())
+ self.num_types = len(set(self.get_tokens_flat()))
def get_tokens_flat(self):
return list(wl_misc.flatten_list(self.tokens_multilevel))
@@ -598,10 +613,6 @@ def __init__(self, main, file): # pylint: disable=super-init-not-called
# Remove Wl_Main object from the text since it cannot be pickled
del self.main
-class Wl_Text_Blank(Wl_Text):
- def __init__(self): # pylint: disable=super-init-not-called
- pass
-
class Wl_Text_Total(Wl_Text):
def __init__(self, texts): # pylint: disable=super-init-not-called
# Set language for the combined text only if all texts are in the same language
@@ -610,6 +621,8 @@ def __init__(self, texts): # pylint: disable=super-init-not-called
else:
self.lang = 'other'
+ self.tagged = any((text.tagged for text in texts))
+
self.tokens_multilevel = [
copy.deepcopy(para)
for text in texts
diff --git a/wordless/wl_nlp/wl_token_processing.py b/wordless/wl_nlp/wl_token_processing.py
index 12e090dfb..b0adc0ccd 100644
--- a/wordless/wl_nlp/wl_token_processing.py
+++ b/wordless/wl_nlp/wl_token_processing.py
@@ -28,14 +28,12 @@
# Assign part-of-speech tags
def text_pos_tag(main, text, settings):
if settings['assign_pos_tags'] and not text.tagged:
- tokens = wl_pos_tagging.wl_pos_tag(
+ wl_pos_tagging.wl_pos_tag(
main,
inputs = text.get_tokens_flat(),
lang = text.lang
)
- text.update_token_properties(tokens)
-
# Apply lemmatization / Match inflected forms
def text_lemmatize(main, text, token_settings, search_settings = None):
search_settings = search_settings or {
@@ -55,24 +53,20 @@ def text_lemmatize(main, text, token_settings, search_settings = None):
and search_settings['context_settings']['excl']['match_inflected_forms']
)
):
- tokens = wl_lemmatization.wl_lemmatize(
+ wl_lemmatization.wl_lemmatize(
main,
inputs = text.get_tokens_flat(),
lang = text.lang
)
- text.update_token_properties(tokens)
-
# Syllable tokenization
def text_syl_tokenize(main, text):
- tokens = wl_syl_tokenization.wl_syl_tokenize(
+ wl_syl_tokenization.wl_syl_tokenize(
main,
inputs = text.get_tokens_flat(),
lang = text.lang,
)
- text.update_token_properties(tokens)
-
# Ignore tags
def text_ignore_tags(text, settings):
if settings['ignore_tags']:
@@ -133,7 +127,7 @@ def wl_process_tokens(main, text, token_settings, search_settings = None):
# Remove tags temporarily if text is untagged and users do not choose to assign POS tags on the fly
if not settings['assign_pos_tags'] and not text.tagged:
- text_modified.set_token_properties('tag', '')
+ text_modified.set_token_properties('tag', None)
# Punctuation marks
if not settings['punc_marks']:
@@ -272,12 +266,25 @@ def remove_empty_tokens_multilevel(tokens_multilevel, empty_tokens = True):
return tokens_multilevel
-def wl_process_tokens_profiler(main, text, token_settings):
+def wl_process_tokens_profiler(main, text, token_settings, profiler_tab):
# Punctuation marks must be preserved for some readability measures (e.g. Wheeler & Smith's Readability Formula)
text.tokens_multilevel_with_puncs = copy.deepcopy(text.tokens_multilevel)
text_syl_tokenize(main, text)
+ if profiler_tab in ['readability', 'all']:
+ if text.lang in main.settings_global['pos_taggers']:
+ wl_pos_tagging.wl_pos_tag_universal(main, text.get_tokens_flat(), lang = text.lang, tagged = text.tagged)
+
+ # Polish variant of Gunning Fog Index
+ if text.lang == 'pol':
+ wl_lemmatization.wl_lemmatize(main, text.get_tokens_flat(), lang = text.lang)
+
+ if profiler_tab in ['lexical_density_diversity', 'all']:
+ # Lexical density
+ if text.lang in main.settings_global['pos_taggers']:
+ wl_pos_tagging.wl_pos_tag_universal(main, text.get_tokens_flat(), lang = text.lang, tagged = text.tagged)
+
text_modified = wl_process_tokens_ngram_generator(main, text, token_settings)
text_modified.tokens_multilevel = remove_empty_tokens_multilevel(text_modified.tokens_multilevel)
text_modified.update_num_tokens()
@@ -285,19 +292,17 @@ def wl_process_tokens_profiler(main, text, token_settings):
return text_modified
def wl_process_tokens_concordancer(main, text, token_settings, search_settings, preserve_blank_lines = False):
- settings = copy.deepcopy(token_settings)
-
text_pos_tag(main, text, token_settings)
text_lemmatize(main, text, token_settings, search_settings)
text_modified = copy.deepcopy(text)
# Remove tags temporarily if text is untagged and users do not choose to assign POS tags on the fly
- if not settings['assign_pos_tags'] and not text.tagged:
+ if not token_settings['assign_pos_tags'] and not text.tagged:
text_modified.set_token_properties('tag', '')
# Punctuation marks
- if not settings['punc_marks']:
+ if not token_settings['punc_marks']:
tokens_flat_punc_marks = []
for i, token in enumerate(text_modified.get_tokens_flat()):
@@ -358,18 +363,14 @@ def wl_process_tokens_concordancer(main, text, token_settings, search_settings,
return text_modified
def wl_process_tokens_dependency_parser(main, text, token_settings, search_settings):
- # Dependency parsing
- tokens_modified = []
-
+ # Do not modify original sentence tokenization during dependency parsing
for para in text.tokens_multilevel:
for sentence in para:
- tokens_modified.extend(wl_dependency_parsing.wl_dependency_parse(
+ wl_dependency_parsing.wl_dependency_parse(
main,
inputs = list(wl_misc.flatten_list(sentence)),
lang = text.lang,
- ))
-
- text.update_token_properties(tokens_modified)
+ )
return wl_process_tokens_concordancer(main, text, token_settings, search_settings)
diff --git a/wordless/wl_profiler.py b/wordless/wl_profiler.py
index 1935009b8..1b72ce903 100644
--- a/wordless/wl_profiler.py
+++ b/wordless/wl_profiler.py
@@ -29,7 +29,7 @@
from wordless.wl_checks import wl_checks_tokens, wl_checks_work_area
from wordless.wl_dialogs import wl_dialogs_misc
-from wordless.wl_measures import wl_measures_lexical_diversity, wl_measures_misc, wl_measures_readability
+from wordless.wl_measures import wl_measures_lexical_density_diversity, wl_measures_misc, wl_measures_readability
from wordless.wl_nlp import wl_texts, wl_token_processing
from wordless.wl_utils import wl_misc, wl_threading
from wordless.wl_widgets import wl_layouts, wl_tables, wl_widgets
@@ -43,14 +43,14 @@ def __init__(self, main):
# Table
self.table_profiler_readability = Wl_Table_Profiler_Readability(self)
self.table_profiler_counts = Wl_Table_Profiler_Counts(self)
- self.table_profiler_lexical_diversity = Wl_Table_Profiler_Lexical_Diversity(self)
+ self.table_profiler_lexical_density_diversity = Wl_Table_Profiler_Lexical_Density_Diversity(self)
self.table_profiler_lens = Wl_Table_Profiler_Lens(self)
self.table_profiler_len_breakdown = Wl_Table_Profiler_Len_Breakdown(self)
self.tables = [
self.table_profiler_readability,
self.table_profiler_counts,
- self.table_profiler_lexical_diversity,
+ self.table_profiler_lexical_density_diversity,
self.table_profiler_lens,
self.table_profiler_len_breakdown
]
@@ -76,7 +76,7 @@ def __init__(self, main):
self.tabs_profiler = QTabWidget(self)
self.tabs_profiler.addTab(self.table_profiler_readability, self.tr('Readability'))
self.tabs_profiler.addTab(self.table_profiler_counts, self.tr('Counts'))
- self.tabs_profiler.addTab(self.table_profiler_lexical_diversity, self.tr('Lexical Diversity'))
+ self.tabs_profiler.addTab(self.table_profiler_lexical_density_diversity, self.tr('Lexical Density/Diversity'))
self.tabs_profiler.addTab(self.table_profiler_lens, self.tr('Lengths'))
self.tabs_profiler.addTab(self.table_profiler_len_breakdown, self.tr('Length Breakdown'))
@@ -426,16 +426,13 @@ def update_gui_table(self, err_msg, text_stats_files):
self.disable_updates()
for i, stats in enumerate(text_stats_files):
- readability_stats = stats[0]
-
- # Readability
- for j, statistic in enumerate(readability_stats):
- if statistic == 'no_support':
+ for j, stat in enumerate(stats[0]):
+ if stat == 'no_support':
self.set_item_err(j, i, self.tr('No language support'), alignment_hor = 'right')
- elif statistic == 'text_too_short':
+ elif stat == 'text_too_short':
self.set_item_err(j, i, self.tr('Text is too short'), alignment_hor = 'right')
else:
- self.set_item_num(j, i, statistic)
+ self.set_item_num(j, i, stat)
self.enable_updates()
@@ -508,34 +505,25 @@ def update_gui_table(self, err_msg, text_stats_files):
count_sentence_segs_total = len(text_stats_files[-1][5])
count_tokens_total = len(text_stats_files[-1][7])
count_types_total = len(text_stats_files[-1][9])
- count_syls_total = len(text_stats_files[-1][10])
+ count_syls_total = len(text_stats_files[-1][10]) if text_stats_files[-1][10] is not None else None
count_chars_total = sum(text_stats_files[-1][7])
self.disable_updates()
for i, stats in enumerate(text_stats_files):
- if i < len(files):
- file_lang = files[i]['lang']
- # Total
- else:
- if len({file['lang'] for file in files}) == 1:
- file_lang = files[0]['lang']
- else:
- file_lang = 'other'
-
len_paras_sentences = numpy.array(stats[1])
len_sentences = numpy.array(stats[4])
len_sentence_segs = numpy.array(stats[5])
len_tokens_chars = numpy.array(stats[7])
len_types_chars = numpy.array(stats[9])
- len_syls = numpy.array(stats[10])
+ len_syls = numpy.array(stats[10]) if stats[10] is not None else None
count_paras = len(len_paras_sentences)
count_sentences = len(len_sentences)
count_sentence_segs = len(len_sentence_segs)
count_tokens = len(len_tokens_chars)
count_types = len(len_types_chars)
- count_syls = len(len_syls)
+ count_syls = len(len_syls) if len_syls is not None else None
count_chars = numpy.sum(len_tokens_chars)
# Count of Paragraphs
@@ -559,7 +547,7 @@ def update_gui_table(self, err_msg, text_stats_files):
self.set_item_num(9, i, count_types, count_types_total)
# Count of Syllables
- if file_lang in self.main.settings_global['syl_tokenizers']:
+ if count_syls is not None:
self.set_item_num(10, i, count_syls)
self.set_item_num(11, i, count_syls, count_syls_total)
else:
@@ -582,16 +570,17 @@ def update_gui_table(self, err_msg, text_stats_files):
return err_msg
-class Wl_Table_Profiler_Lexical_Diversity(Wl_Table_Profiler):
+class Wl_Table_Profiler_Lexical_Density_Diversity(Wl_Table_Profiler):
def __init__(self, parent):
- HEADERS_LEXICAL_DIVERSITY = [
+ HEADERS_LEXICAL_DENSITY_DIVERSITY = [
_tr('wl_profiler', "Brunét's Index"),
_tr('wl_profiler', 'Corrected TTR'),
_tr('wl_profiler', "Fisher's Index of Diversity"),
_tr('wl_profiler', "Herdan's Vₘ"),
- _tr('wl_profiler', 'HD-D'),
- _tr('wl_profiler', "Honoré's statistic"),
- _tr('wl_profiler', 'LogTTR'),
+ 'HD-D',
+ _tr('wl_profiler', "Honoré's Statistic"),
+ _tr('wl_profiler', 'Lexical Density'),
+ 'LogTTR',
_tr('wl_profiler', 'Mean Segmental TTR'),
_tr('wl_profiler', 'Measure of Textual Lexical Diversity'),
_tr('wl_profiler', 'Moving-average TTR'),
@@ -609,16 +598,16 @@ def __init__(self, parent):
_tr('wl_profiler', 'Shannon Entropy'),
_tr('wl_profiler', "Simpson's l"),
_tr('wl_profiler', 'Type-token Ratio'),
- _tr('wl_profiler', 'vocd-D'),
+ 'vocd-D',
_tr('wl_profiler', "Yule's Characteristic K"),
_tr('wl_profiler', "Yule's Index of Diversity")
]
super().__init__(
parent,
- headers = HEADERS_LEXICAL_DIVERSITY,
- headers_float = HEADERS_LEXICAL_DIVERSITY,
- profiler_tab = 'lexical_diversity'
+ headers = HEADERS_LEXICAL_DENSITY_DIVERSITY,
+ headers_float = HEADERS_LEXICAL_DENSITY_DIVERSITY,
+ profiler_tab = 'lexical_density_diversity'
)
def update_gui_table(self, err_msg, text_stats_files):
@@ -643,8 +632,11 @@ def update_gui_table(self, err_msg, text_stats_files):
self.disable_updates()
for i, stats in enumerate(text_stats_files):
- for j, lexical_diversity in enumerate(stats[11]):
- self.set_item_num(j, i, lexical_diversity)
+ for j, stat in enumerate(stats[11]):
+ if stat == 'no_support':
+ self.set_item_err(j, i, self.tr('No language support'), alignment_hor = 'right')
+ else:
+ self.set_item_num(j, i, stat)
self.enable_updates()
@@ -846,25 +838,16 @@ def update_gui_table(self, err_msg, text_stats_files):
self.disable_updates()
for i, stats in enumerate(text_stats_files):
- if i < len(files):
- file_lang = files[i]['lang']
- # Total
- else:
- if len({file['lang'] for file in files}) == 1:
- file_lang = files[0]['lang']
- else:
- file_lang = 'other'
-
len_paras_sentences = numpy.array(stats[1])
len_paras_sentence_segs = numpy.array(stats[2])
len_paras_tokens = numpy.array(stats[3])
len_sentences = numpy.array(stats[4])
len_sentence_segs = numpy.array(stats[5])
- len_tokens_syls = numpy.array(stats[6])
+ len_tokens_syls = numpy.array(stats[6]) if stats[6] is not None else None
len_tokens_chars = numpy.array(stats[7])
- len_types_syls = numpy.array(stats[8])
+ len_types_syls = numpy.array(stats[8]) if stats[8] is not None else None
len_types_chars = numpy.array(stats[9])
- len_syls = numpy.array(stats[10])
+ len_syls = numpy.array(stats[10]) if stats[10] is not None else None
# Paragraph Length in Sentences / Sentence Segments / Tokens
# Sentence / Sentence Segment Length in Tokens
@@ -908,7 +891,7 @@ def update_gui_table(self, err_msg, text_stats_files):
[55, 77, 99],
[len_tokens_syls, len_types_syls, len_syls]
):
- if file_lang in self.main.settings_global['syl_tokenizers']:
+ if lens is not None:
if lens.any():
self.set_item_num(row, i, numpy.mean(lens))
self.set_item_num(row + 1, i, numpy.std(lens))
@@ -983,12 +966,14 @@ def update_gui_table(self, err_msg, text_stats_files):
for i, stats in enumerate(text_stats_files):
len_sentences = numpy.array(stats[4])
len_sentence_segs = numpy.array(stats[5])
- len_tokens_syls = numpy.array(stats[6])
+ len_tokens_syls = numpy.array(stats[6]) if stats[6] is not None else None
len_tokens_chars = numpy.array(stats[7])
count_sentences_lens.append(collections.Counter(len_sentences))
count_sentence_segs_lens.append(collections.Counter(len_sentence_segs))
- count_tokens_lens_syls.append(collections.Counter(len_tokens_syls))
+ count_tokens_lens_syls.append(
+ collections.Counter(len_tokens_syls) if len_tokens_syls is not None else None
+ )
count_tokens_lens_chars.append(collections.Counter(len_tokens_chars))
# Count of n-token-long Sentences
@@ -1064,7 +1049,7 @@ def update_gui_table(self, err_msg, text_stats_files):
)
# Count of n-syllable-long Tokens
- if any(count_tokens_lens_syls):
+ if len_tokens_syls is not None:
count_tokens_lens_files = wl_misc.merge_dicts(count_tokens_lens_syls)
count_tokens_lens_total = {
len_token: count_tokens_files[-1]
@@ -1166,7 +1151,8 @@ def run(self):
for file in files:
text = wl_token_processing.wl_process_tokens_profiler(
self.main, file['text'],
- token_settings = settings['token_settings']
+ token_settings = settings['token_settings'],
+ profiler_tab = self.profiler_tab
)
texts.append(text)
@@ -1224,7 +1210,7 @@ def run(self):
else:
stats_readability = None
- if self.profiler_tab in ['lexical_diversity', 'counts', 'lens', 'len_breakdown', 'all']:
+ if self.profiler_tab in ['lexical_density_diversity', 'counts', 'lens', 'len_breakdown', 'all']:
# Paragraph length
len_paras_sentences = [
len(para)
@@ -1252,22 +1238,33 @@ def run(self):
for sentence_seg in sentence
]
- syls_tokens = text.get_token_properties('syls', flat = True)
+ if text.lang in self.main.settings_global['syl_tokenizers']:
+ syls_tokens = text.get_token_properties('syls', flat = True)
+
+ # Remove punctuation marks
+ for i, syls in enumerate(syls_tokens):
+ syls_tokens[i] = tuple(syl for syl in syls if not wl_checks_tokens.is_punc(syl))
- # Remove punctuation marks
- for i, syls in enumerate(syls_tokens):
- syls_tokens[i] = tuple(syl for syl in syls if not wl_checks_tokens.is_punc(syl))
+ syls_tokens = [syls for syls in syls_tokens if syls]
- syls_tokens = [syls for syls in syls_tokens if syls]
+ # Token length
+ len_tokens_syls = [len(syls) for syls in syls_tokens]
+ # Type length
+ len_types_syls = [len(syls) for syls in set(syls_tokens)]
+ # Syllable length
+ len_syls = [len(syl) for syls in syls_tokens for syl in syls]
+ else:
+ # Token length
+ len_tokens_syls = None
+ # Type length
+ len_types_syls = None
+ # Syllable length
+ len_syls = None
# Token length
- len_tokens_syls = [len(syls) for syls in syls_tokens]
len_tokens_chars = [len(token) for token in tokens]
# Type length
- len_types_syls = [len(syls) for syls in set(syls_tokens)]
len_types_chars = [len(token_type) for token_type in set(tokens)]
- # Syllable length
- len_syls = [len(syl) for syls in syls_tokens for syl in syls]
else:
len_paras_sentences = len_paras_sentence_segs = len_paras_tokens = None
len_sentences = len_sentence_segs = None
@@ -1275,38 +1272,39 @@ def run(self):
len_types_syls = len_types_chars = None
len_syls = None
- # Lexical Diversity
- if self.profiler_tab in ['lexical_diversity', 'all']:
+ # Lexical Density/Diversity
+ if self.profiler_tab in ['lexical_density_diversity', 'all']:
if tokens:
- stats_lexical_diversity = [
- wl_measures_lexical_diversity.brunets_index(self.main, tokens),
- wl_measures_lexical_diversity.cttr(self.main, tokens),
- wl_measures_lexical_diversity.fishers_index_of_diversity(self.main, tokens),
- wl_measures_lexical_diversity.herdans_vm(self.main, tokens),
- wl_measures_lexical_diversity.hdd(self.main, tokens),
- wl_measures_lexical_diversity.honores_stat(self.main, tokens),
- wl_measures_lexical_diversity.logttr(self.main, tokens),
- wl_measures_lexical_diversity.msttr(self.main, tokens),
- wl_measures_lexical_diversity.mtld(self.main, tokens),
- wl_measures_lexical_diversity.mattr(self.main, tokens),
- *wl_measures_lexical_diversity.popescu_macutek_altmanns_b1_b2_b3_b4_b5(self.main, tokens),
- wl_measures_lexical_diversity.popescus_r1(self.main, tokens),
- wl_measures_lexical_diversity.popescus_r2(self.main, tokens),
- wl_measures_lexical_diversity.popescus_r3(self.main, tokens),
- wl_measures_lexical_diversity.popescus_r4(self.main, tokens),
- wl_measures_lexical_diversity.repeat_rate(self.main, tokens),
- wl_measures_lexical_diversity.rttr(self.main, tokens),
- wl_measures_lexical_diversity.shannon_entropy(self.main, tokens),
- wl_measures_lexical_diversity.simpsons_l(self.main, tokens),
- wl_measures_lexical_diversity.ttr(self.main, tokens),
- wl_measures_lexical_diversity.vocdd(self.main, tokens),
- wl_measures_lexical_diversity.yules_characteristic_k(self.main, tokens),
- wl_measures_lexical_diversity.yules_index_of_diversity(self.main, tokens)
+ stats_lexical_density_diversity = [
+ wl_measures_lexical_density_diversity.brunets_index(self.main, text),
+ wl_measures_lexical_density_diversity.cttr(self.main, text),
+ wl_measures_lexical_density_diversity.fishers_index_of_diversity(self.main, text),
+ wl_measures_lexical_density_diversity.herdans_vm(self.main, text),
+ wl_measures_lexical_density_diversity.hdd(self.main, text),
+ wl_measures_lexical_density_diversity.honores_stat(self.main, text),
+ wl_measures_lexical_density_diversity.lexical_density(self.main, text),
+ wl_measures_lexical_density_diversity.logttr(self.main, text),
+ wl_measures_lexical_density_diversity.msttr(self.main, text),
+ wl_measures_lexical_density_diversity.mtld(self.main, text),
+ wl_measures_lexical_density_diversity.mattr(self.main, text),
+ *wl_measures_lexical_density_diversity.popescu_macutek_altmanns_b1_b2_b3_b4_b5(self.main, text),
+ wl_measures_lexical_density_diversity.popescus_r1(self.main, text),
+ wl_measures_lexical_density_diversity.popescus_r2(self.main, text),
+ wl_measures_lexical_density_diversity.popescus_r3(self.main, text),
+ wl_measures_lexical_density_diversity.popescus_r4(self.main, text),
+ wl_measures_lexical_density_diversity.repeat_rate(self.main, text),
+ wl_measures_lexical_density_diversity.rttr(self.main, text),
+ wl_measures_lexical_density_diversity.shannon_entropy(self.main, text),
+ wl_measures_lexical_density_diversity.simpsons_l(self.main, text),
+ wl_measures_lexical_density_diversity.ttr(self.main, text),
+ wl_measures_lexical_density_diversity.vocdd(self.main, text),
+ wl_measures_lexical_density_diversity.yules_characteristic_k(self.main, text),
+ wl_measures_lexical_density_diversity.yules_index_of_diversity(self.main, text)
]
else:
- stats_lexical_diversity = [0] * 27
+ stats_lexical_density_diversity = [0] * 28
else:
- stats_lexical_diversity = None
+ stats_lexical_density_diversity = None
self.text_stats_files.append([
stats_readability,
@@ -1320,7 +1318,7 @@ def run(self):
len_types_syls,
len_types_chars,
len_syls,
- stats_lexical_diversity
+ stats_lexical_density_diversity
])
if len(files) == 1:
diff --git a/wordless/wl_settings/wl_settings.py b/wordless/wl_settings/wl_settings.py
index 7e6d6390e..001a349c8 100644
--- a/wordless/wl_settings/wl_settings.py
+++ b/wordless/wl_settings/wl_settings.py
@@ -90,7 +90,7 @@ def __init__(self, main):
self.tree_settings.model().appendRow(QStandardItem(self.tr('Measures')))
self.tree_settings.model().item(10).appendRow(QStandardItem(self.tr('Readability')))
- self.tree_settings.model().item(10).appendRow(QStandardItem(self.tr('Lexical Diversity')))
+ self.tree_settings.model().item(10).appendRow(QStandardItem(self.tr('Lexical Density/Diversity')))
self.tree_settings.model().item(10).appendRow(QStandardItem(self.tr('Dispersion')))
self.tree_settings.model().item(10).appendRow(QStandardItem(self.tr('Adjusted Frequency')))
self.tree_settings.model().item(10).appendRow(QStandardItem(self.tr('Statistical Significance')))
@@ -144,7 +144,7 @@ def __init__(self, main):
# Measures
self.settings_measures_readability = wl_settings_measures.Wl_Settings_Measures_Readability(self.main)
- self.settings_measures_lexical_diversity = wl_settings_measures.Wl_Settings_Measures_Lexical_Diversity(self.main)
+ self.settings_measures_lexical_density_diversity = wl_settings_measures.Wl_Settings_Measures_Lexical_Density_Diversity(self.main)
self.settings_measures_dispersion = wl_settings_measures.Wl_Settings_Measures_Dispersion(self.main)
self.settings_measures_adjusted_freq = wl_settings_measures.Wl_Settings_Measures_Adjusted_Freq(self.main)
self.settings_measures_statistical_significance = wl_settings_measures.Wl_Settings_Measures_Statistical_Significance(self.main)
@@ -183,7 +183,7 @@ def __init__(self, main):
self.tr('Sentiment Analysis'): self.settings_sentiment_analysis,
self.tr('Readability'): self.settings_measures_readability,
- self.tr('Lexical Diversity'): self.settings_measures_lexical_diversity,
+ self.tr('Lexical Density/Diversity'): self.settings_measures_lexical_density_diversity,
self.tr('Dispersion'): self.settings_measures_dispersion,
self.tr('Adjusted Frequency'): self.settings_measures_adjusted_freq,
self.tr('Statistical Significance'): self.settings_measures_statistical_significance,
diff --git a/wordless/wl_settings/wl_settings_default.py b/wordless/wl_settings/wl_settings_default.py
index 46f6cde90..33b23753a 100644
--- a/wordless/wl_settings/wl_settings_default.py
+++ b/wordless/wl_settings/wl_settings_default.py
@@ -22,6 +22,7 @@
from PyQt5.QtCore import QCoreApplication
from PyQt5.QtWidgets import QDesktopWidget
+from wordless.wl_nlp import wl_pos_tagging
from wordless.wl_settings import wl_settings_global
from wordless.wl_tagsets import (
wl_tagset_cat_universal,
@@ -2310,8 +2311,8 @@ def init_settings_default(main):
}
},
- # Settings - Measures - Lexical Diversity
- 'lexical_diversity': {
+ # Settings - Measures - Lexical Density/Diversity
+ 'lexical_density_diversity': {
'hdd': {
'sample_size': 42
},
@@ -2509,6 +2510,12 @@ def init_settings_default(main):
}
# Tagsets
+ for mappings in settings_default['pos_tagging']['tagsets']['mapping_settings'].values():
+ for mapping in mappings.values():
+ if len(mapping[0]) == 4:
+ for i, (_, universal_pos_tag, _, _) in enumerate(mapping):
+ mapping[i].insert(2, wl_pos_tagging.to_content_function(universal_pos_tag))
+
settings_default['pos_tagging']['tagsets']['preview_settings']['preview_pos_tagger'] = settings_default['pos_tagging']['pos_tagger_settings']['pos_taggers'].copy()
# Custom stop word lists
diff --git a/wordless/wl_settings/wl_settings_measures.py b/wordless/wl_settings/wl_settings_measures.py
index 527fa9c87..a25f80859 100644
--- a/wordless/wl_settings/wl_settings_measures.py
+++ b/wordless/wl_settings/wl_settings_measures.py
@@ -353,13 +353,13 @@ def apply_settings(self):
return True
-# Measures - Lexical Diversity
-class Wl_Settings_Measures_Lexical_Diversity(wl_settings.Wl_Settings_Node):
+# Measures - Lexical Density/Diversity
+class Wl_Settings_Measures_Lexical_Density_Diversity(wl_settings.Wl_Settings_Node):
def __init__(self, main):
super().__init__(main)
- self.settings_default = self.main.settings_default['measures']['lexical_diversity']
- self.settings_custom = self.main.settings_custom['measures']['lexical_diversity']
+ self.settings_default = self.main.settings_default['measures']['lexical_density_diversity']
+ self.settings_custom = self.main.settings_custom['measures']['lexical_density_diversity']
# HD-D
self.group_box_hdd = QGroupBox(self.tr('HD-D'), self)
diff --git a/wordless/wl_settings/wl_settings_pos_tagging.py b/wordless/wl_settings/wl_settings_pos_tagging.py
index 17bed7e00..c2930f833 100644
--- a/wordless/wl_settings/wl_settings_pos_tagging.py
+++ b/wordless/wl_settings/wl_settings_pos_tagging.py
@@ -305,6 +305,7 @@ def __init__(self, main):
headers = [
self.tr('Part-of-speech Tag'),
self.tr('Universal Part-of-speech Tag'),
+ self.tr('Content/Function Words'),
self.tr('Description'),
self.tr('Examples')
],
@@ -339,8 +340,15 @@ def __init__(self, main):
],
editable = True
))
- self.table_mappings.setItemDelegateForColumn(2, wl_item_delegates.Wl_Item_Delegate(self.table_mappings, QPlainTextEdit))
+ self.table_mappings.setItemDelegateForColumn(2, wl_item_delegates.Wl_Item_Delegate_Combo_Box(
+ parent = self.table_mappings,
+ items = [
+ 'Content words',
+ 'Function words'
+ ]
+ ))
self.table_mappings.setItemDelegateForColumn(3, wl_item_delegates.Wl_Item_Delegate(self.table_mappings, QPlainTextEdit))
+ self.table_mappings.setItemDelegateForColumn(4, wl_item_delegates.Wl_Item_Delegate(self.table_mappings, QPlainTextEdit))
self.button_tagsets_reset.setMinimumWidth(100)
self.button_tagsets_reset_all.setMinimumWidth(100)
@@ -446,11 +454,12 @@ def update_gui(self, mappings):
self.table_mappings.disable_updates()
- for i, (tag, tag_universal, description, examples) in enumerate(mappings):
+ for i, (tag, tag_universal, content_function_words, description, examples) in enumerate(mappings):
self.table_mappings.model().setItem(i, 0, QStandardItem(tag))
self.table_mappings.model().setItem(i, 1, QStandardItem(tag_universal))
- self.table_mappings.model().setItem(i, 2, QStandardItem(description))
- self.table_mappings.model().setItem(i, 3, QStandardItem(examples))
+ self.table_mappings.model().setItem(i, 2, QStandardItem(content_function_words))
+ self.table_mappings.model().setItem(i, 3, QStandardItem(description))
+ self.table_mappings.model().setItem(i, 4, QStandardItem(examples))
self.table_mappings.enable_updates()
diff --git a/wordless/wl_tagsets/wl_tagset_lao_seqlabeling.py b/wordless/wl_tagsets/wl_tagset_lao_seqlabeling.py
index 2d27a7bd2..fefada8d7 100644
--- a/wordless/wl_tagsets/wl_tagset_lao_seqlabeling.py
+++ b/wordless/wl_tagsets/wl_tagset_lao_seqlabeling.py
@@ -52,6 +52,6 @@
['FIX', 'PART', '前置词', ''],
['NEG', 'PART', '否定词', ''],
- ['INT', 'INT', '语气词', ''],
+ ['INT', 'INTJ', '语气词', ''],
['PUNCT', 'PUNCT', '标点符号', '']
]
diff --git a/wordless/wl_tagsets/wl_tagset_lao_yunshan_cup_2020.py b/wordless/wl_tagsets/wl_tagset_lao_yunshan_cup_2020.py
index 69b465775..eb55d416a 100644
--- a/wordless/wl_tagsets/wl_tagset_lao_yunshan_cup_2020.py
+++ b/wordless/wl_tagsets/wl_tagset_lao_yunshan_cup_2020.py
@@ -52,6 +52,6 @@
['FIX', 'PART', '前置词', ''],
['NEG', 'PART', '否定词', ''],
- ['INT', 'INT', '语气词', ''],
+ ['INT', 'INTJ', '语气词', ''],
['PUNCT', 'PUNCT', '标点符号', '']
]