forked from apadee/NIRS-pytoolkit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfilter.py
202 lines (175 loc) · 7.03 KB
/
filter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# -*- coding: utf-8 -*-
"""Filtering tools"""
# Authors: Anna Padée <[email protected]>
#
# License: BSD-3-Clause
import numpy as np
from scipy.signal import butter, freqz, filtfilt
import matplotlib.pyplot as plt
def butter_lowpass(cutoff: float, fs: float, order: int = 5):
"""
Calculate parameters of a butterworth lowpass filter.
Args:
cutoff: cuttoff frequency in Hz
fs: sample frequency in Hz
order: order of the filter
Returns:
a, b (float): Numerator (b) and denominator (a) polynomial coefficients of the filter
"""
nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
b, a = butter(order, normal_cutoff, btype='low', analog=False)
return b, a
def butter_lowpass_filter(data: np.ndarray, cutoff: float, fs: float, order: int = 5):
"""
Filter the data with lowpass butterworth filter
Args:
data: Array of data values; Two rows (O2Hb and HHb) for each channel
cutoff: cuttoff frequency in Hz
fs: sample frequency in Hz
order: order of the filter
Returns:
result (numpy.ndarray): 2D array of filtered data. If the input was 1D, the new shape will be (1, n_of_samples)
"""
data = np.atleast_2d(data)
result = np.empty_like(data)
b, a = butter_lowpass(cutoff, fs, order=order)
for i in range(0,len(data[:, 0])):
#filtfilt applies the same filter twice: forward and backwards, which cancels out phase distortion
# and doesn't cause delay in the signal, unlike lfilter(), which filters the same way twice
result[i, :] = filtfilt(b, a, data[i,:])
return result
def plot_lowpass_response(cutoff: float, fs: float, order: int):
"""
Plot the lowpass filter response in frequency domain
Args:
cutoff: cuttoff frequency in Hz
fs: sample frequency in Hz
order: order of the filter
Returns:
None
"""
b, a = butter_lowpass(cutoff, fs, order)
w, h = freqz(b, a)
fig = plt.figure()
fig.canvas.set_window_title('Lowpass filter response')
plt.plot(0.5*fs*w/np.pi, np.abs(h), 'b')
plt.plot(cutoff, 0.5 * np.sqrt(2), 'ko')
plt.axvline(cutoff, color='k')
plt.xlim(0, 0.5 * fs)
plt.title("Filter response")
plt.xlabel('Freq[Hz]')
plt.grid()
plt.show()
def butter_bandpass(cut_low: float, cut_high: float, fs: float, order: int = 5):
"""
Calculate parameters of a butterworth bandpass filter.
Args:
cut_low: lower cuttoff frequency in Hz
cut_high: upper cuttoff frequency in Hz
fs: sample frequency in Hz
order: order of the filter
Returns:
a, b (float): Numerator (b) and denominator (a) polynomial coefficients of the filter
"""
nyq = 0.5 * fs
b, a = butter(order, [cut_low / nyq, cut_high / nyq], btype='band')
return b, a
def butter_bandpass_filter(data: np.ndarray, cut_low: float, cut_high: float, fs: float, order: int = 5):
"""
Filter the data with lowpass butterworth filter
Args:
data: Array of data values; Two rows (O2Hb and HHb) for each channel
cut_low: lower cuttoff frequency in Hz
cut_high: upper cuttoff frequency in Hz
fs: sample frequency in Hz
order: order of the filter
Returns:
result (numpy.ndarray): 2D array of filtered data. If the input was 1D, the new shape will be (1, n_of_samples)
"""
data = np.atleast_2d(data)
result = np.empty_like(data)
b, a = butter_bandpass(cut_low, cut_high, fs, order=order)
for i in range(0, len(data[:, 0])):
# filtfilt applies the same filter twice: forward and backwards, which cancels out phase distortion
# and doesn't cause delay in the signal, unlike lfilter(), which filters the same way twice
result[i, :] = filtfilt(b, a, data[i, :])
return result
def plot_bandpass_response(cut_low: float, cut_high: float, fs: float, order: int):
"""
Plot the bandpass filter response in frequency domain
Args:
cut_low: lower cuttoff frequency in Hz
cut_high: upper cuttoff frequency in Hz
fs: sample frequency in Hz
order: order of the filter
Returns:
None
"""
b, a = butter_bandpass(cut_low, cut_high, fs, order)
w, h = freqz(b, a)
fig = plt.figure()
fig.canvas.set_window_title('Bandpass filter response')
plt.plot(0.5*fs*w/np.pi, np.abs(h), 'b')
plt.plot(cut_low, 0.5 * np.sqrt(2), 'ko')
plt.axvline(cut_low, color='k')
plt.plot(cut_high, 0.5 * np.sqrt(2), 'ko')
plt.axvline(cut_high, color='k')
plt.xlim(0, 0.5 * fs)
plt.title("Filter response")
plt.xlabel('Freq[Hz]')
plt.grid()
plt.show()
def butter_highpass(cutoff : float, fs : float, order : int = 5):
"""
Calculate parameters of a butterworth highpass filter.
Args:
cutoff: cuttoff frequency in Hz
fs: sample frequency in Hz
order: order of the filter
Returns:
a, b (float): Numerator (b) and denominator (a) polynomial coefficients of the filter
"""
nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
b, a = butter(order, normal_cutoff, btype='high', analog=False)
return b, a
def butter_highpass_filter(data : np.ndarray, cutoff : float, fs : float, order : int = 5):
"""
Filter the data with highpass butterworth filter
Args:
data: Array of data values; Two rows (O2Hb and HHb) for each channel
cutoff: cuttoff frequency in Hz
fs: sample frequency in Hz
order: order of the filter
Returns:
result (numpy.ndarray): 2D array of filtered data. If the input was 1D, the new shape will be (1, n_of_samples)
"""
data = np.atleast_2d(data)
result = np.empty_like(data)
b, a = butter_highpass(cutoff, fs, order=order)
for i in range(0,len(data[:, 0])):
#filtfilt applies the same filter twice: forward and backwards, which cancels out phase distortion
# and doesn't cause delay in the signal, unlike lfilter(), which filters the same way twice
result[i, :] = filtfilt(b, a, data[i, :])
return result
def detrend(data: np.ndarray, polydeg: int = 3, downsample: int = 1):
"""
Removes trend from the data by approximating it with a polynomial.
Args:
data: Data array (channels, timepoints)
polydeg: Degree of the polynomial used for approximation
downsample: If set to n, takes only every n-th datapoint for approximation. By default, takes all datapoints.
:return: Data with the trend removed for every channel
"""
if not ("numpy.ndarray" in str(type(data))):
raise TypeError('Data must be numpy ndarray, not %s' % type(data))
nsamples = len(data[0, :])
nchannels = len(data[:, 0])
xaxis = np.array(range(0, nsamples))
result = np.zeros((nchannels, nsamples))
for i in range(0, nchannels):
coeffs = np.polyfit(xaxis[::downsample], data[i, ::downsample], deg=polydeg)
fitted = np.polyval(coeffs, xaxis)
result[i, :] = data[i, :] - fitted
return result