Skip to content

Latest commit

 

History

History
98 lines (50 loc) · 2.64 KB

README.md

File metadata and controls

98 lines (50 loc) · 2.64 KB

Alpha-Zero-Gomoku

Gomoku AI (Alpha Zero) implemented by pytorch and onnxruntime.

Tutorial About Alpha Zero (Chinese):

bilibili (part 1-3):

https://www.bilibili.com/video/BV1a5411Q7en/

https://www.bilibili.com/video/BV1tL4y1K7UB/

https://www.bilibili.com/video/BV1Fa411L7ea/

PPT(Chinese):

AlphaZero-AI网络教程.pptx

Supported Games

Currently only Gomoku and similar games such as Tic-Tac-Toe.

Welcome other game implementions if you want to become the contributor!

Supported OS System

linux/Windows (tested on Ubuntu 20 + GPU and Windows 10 + GPU or CPU)

Supported Enviroment

Both GPU and CPU (GPU test on Tesla V100 + Cuda 11 / CPU test on Intel i7)

Language

C++ (for speed!) and python. The model is trained by pytorch (Python) and onnxruntime (C++,for selfplay), and inferenced by onnxruntime (C++).

Dependence

gcc (linux) or visual studio 19 (windows)

cmake 3.13+

pytorch (tested on 1.11)

onnxruntime-gpu (tested on 1.11)

Installation

Download and install miniconda / python and "pip install" all the dependent packages such as pytorch

train.sh: convert "/data/miniconda3/bin/python" to "python" or "python3" or your own python intepreter path

Download onnxruntime: https://github.com/microsoft/onnxruntime/releases/tag/v1.11.1

CMakefiles.txt: convert the onnxruntime path to your own path

mkdir build

copy *.sh to ./build

cd ./build

cmake .. (or "cmake -A x64 ..")

cmake --build . --config Release (or open .sln file through visual Studio 19 and generate for win10)

Train (Linux)

cd ./build

bash train_net.sh

If you want to train the model on windows 10, convert "train.sh" to "train.bat" and change corresponding commands.

Human play with AI (inference)

run mcts_test, for example in linux:

./mcts_test ./weights/1000.onnx 1

Here 1(or 0) = AI play with black(or white) pieces.

The newest trained model will be updated in "model" directory.

Increase or decrease "NUM_MCT_SIMS" in include/common.h (default 1600) to increase the power or speed of AI.

About This Project (Chinese)

一个使用pytorch + onnxruntime训练的Alpha Zero训练框架。 onnxruntime主要负责“左右互搏”的部分,pytorch负责模型参数优化。

目前游戏仅支持五子棋和井字棋,如果有其它小伙伴愿意提供其它棋类游戏的源码,这里非常欢迎。

支持多线程蒙特卡洛树搜索,该部分和模型推理(用于左右互搏)部分均由c++完成,之所以不用python主要是为了加快速度,并且避开python GIL的坑。

本项目支持windows和linux平台。由于我主要在linux上训练,windows相应的代码可能未来不会及时更新,需要修改一下才能用。