-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathhubconf.py
96 lines (79 loc) · 3.83 KB
/
hubconf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import torch
from models.backbone import Backbone, Joiner
from models.conditional_detr import ConditionalDETR, PostProcess
from models.position_encoding import PositionEmbeddingSine
from models.segmentation import DETRsegm, PostProcessPanoptic
from models.transformer import Transformer
dependencies = ["torch", "torchvision"]
def _make_conditional_detr(backbone_name: str, dilation=False, num_classes=91, mask=False):
hidden_dim = 256
backbone = Backbone(backbone_name, train_backbone=True, return_interm_layers=mask, dilation=dilation)
pos_enc = PositionEmbeddingSine(hidden_dim // 2, normalize=True)
backbone_with_pos_enc = Joiner(backbone, pos_enc)
backbone_with_pos_enc.num_channels = backbone.num_channels
transformer = Transformer(d_model=hidden_dim, return_intermediate_dec=True)
detr = ConditionalDETR(backbone_with_pos_enc, transformer, num_classes=num_classes, num_queries=300)
if mask:
return DETRsegm(detr)
return detr
def conditional_detr_resnet50(pretrained=False, num_classes=91, return_postprocessor=False):
"""
ConditionalDETR R50 with 6 encoder and 6 decoder layers.
Achieves 40.9 AP on COCO val5k.
"""
model = _make_conditional_detr("resnet50", dilation=False, num_classes=num_classes)
if pretrained:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://github.com/DeppMeng/ConditionalDETR/releases/download/v1.0/ConditionalDETR_r50_epoch50.pth", map_location="cpu", check_hash=True
)
model.load_state_dict(checkpoint["model"])
if return_postprocessor:
return model, PostProcess()
return model
def conditional_detr_resnet50_dc5(pretrained=False, num_classes=91, return_postprocessor=False):
"""
ConditionalDETR-DC5 R50 with 6 encoder and 6 decoder layers.
The last block of RessNet-50 has dilation to increase
output resolution.
Achieves 43. AP on COCO val5k.
"""
model = _make_conditional_detr("resnet50", dilation=True, num_classes=num_classes)
if pretrained:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://github.com/DeppMeng/ConditionalDETR/releases/download/v1.0/ConditionalDETR_r50dc5_epoch50.pth", map_location="cpu", check_hash=True
)
model.load_state_dict(checkpoint["model"])
if return_postprocessor:
return model, PostProcess()
return model
def conditional_detr_resnet101(pretrained=False, num_classes=91, return_postprocessor=False):
"""
ConditionalDETR-DC5 R101 with 6 encoder and 6 decoder layers.
Achieves 42.8 AP on COCO val5k.
"""
model = _make_conditional_detr("resnet101", dilation=False, num_classes=num_classes)
if pretrained:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://github.com/DeppMeng/ConditionalDETR/releases/download/v1.0/ConditionalDETR_r101_epoch50.pth", map_location="cpu", check_hash=True
)
model.load_state_dict(checkpoint["model"])
if return_postprocessor:
return model, PostProcess()
return model
def conditional_detr_resnet101_dc5(pretrained=False, num_classes=91, return_postprocessor=False):
"""
ConditionalDETR-DC5 R101 with 6 encoder and 6 decoder layers.
The last block of ResNet-101 has dilation to increase
output resolution.
Achieves 45.0 AP on COCO val5k.
"""
model = _make_conditional_detr("resnet101", dilation=True, num_classes=num_classes)
if pretrained:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://github.com/DeppMeng/ConditionalDETR/releases/download/v1.0/ConditionalDETR_r101dc5_epoch50.pth", map_location="cpu", check_hash=True
)
model.load_state_dict(checkpoint["model"])
if return_postprocessor:
return model, PostProcess()
return model