-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathswitch_binary_hertz.py
209 lines (153 loc) · 6.72 KB
/
switch_binary_hertz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
""" Functions for numerical simulation of granular chains with Hertizian contacts and fixed boundaries
Partially developed by Qikai Wu from The O'Hern Group at Yale University <https://jamming.research.yale.edu/>
"""
__author__ = 'Atoosa Parsa'
__copyright__ = 'Copyright 2024, Atoosa Parsa'
__credits__ = ['Atoosa Parsa', 'Qikai Wu']
__license__ = 'MIT License'
__version__ = '0.0.3'
__maintainer__ = 'Atoosa Parsa'
__email__ = '[email protected]'
__status__ = "Dev"
import numpy as np
import matplotlib.pyplot as plt
from scipy import signal
from Wall_1D_functions_hertz import hertz_FIRE_RealBoundX_ConstV_DiffK, hertz_MD_VibrSP_ConstV_RealBoundX_DiffK_damp_3, hertz_MD_VibrSP_ConstV_RealBoundX_DiffK_damp_6, hertz_MD_VibrSP_ConstV_RealBoundX_DiffK_damp_3_c, ConfigPlot_DiffStiffness_RealX
class switch_hertz():
def evaluate_2(stiffness, damping, compression, timeSteps, dt, initial_x, initial_v):
# initial_x is the displacement from the equilibrium initial positions
k1 = 1.
k2 = 2.3
n_col = len(stiffness)
n_row = 1
N = n_col*n_row
Nt_fire = 1e6
B = damping
Nt = timeSteps
dphi = compression
d0 = 0.1
Lx = d0*n_col
Ly = (n_row-1)*np.sqrt(3)/2*d0+d0
x0 = np.zeros(N)
y0 = np.zeros(N)
phi0 = N*np.pi*d0**2/4/(Lx*Ly)
d_ini = d0*np.sqrt(1+dphi/phi0)
D = np.zeros(N)+d_ini
x0 = np.zeros(N)
y0 = np.zeros(N)
for i_row in range(1, n_row+1):
for i_col in range(1, n_col+1):
ind = (i_row-1)*n_col+i_col-1
x0[ind] = (i_col-1)*d0+0.5*d0
y0[ind] = (i_row-1)*np.sqrt(3)/2*d0
y0 = y0+0.5*d0
mass = np.zeros(N) + 1
k_list = np.array([k1, k2, k1 * k2 / (k1 + k2)])
k_type = stiffness
# Steepest Descent to get energy minimum
x_ini, y_ini, p_now = hertz_FIRE_RealBoundX_ConstV_DiffK(Nt_fire, N, x0, y0, D, mass, Lx, Ly, k_list, k_type)
cont, Ek, Ep, p, x_all, v_all = hertz_MD_VibrSP_ConstV_RealBoundX_DiffK_damp_3(k_list, k_type, B, 0, 0, Nt, dt, N, initial_x, x_ini, y_ini, initial_v, D, mass, [Lx, Ly])
return cont, Ek, Ep, p, x_all, v_all
def evaluate_3(stiffness, damping, compression, timeSteps, dt, initial_x, initial_v):
# initial_x is the displacement from the equilibrium initial positions
k1 = 1.
k2 = 2.3
n_col = len(stiffness)
n_row = 1
N = n_col*n_row
Nt_fire = 1e6
B = damping
Nt = timeSteps
dphi = compression
d0 = 0.1
d_ratio = 1.1
Lx = d0*n_col
Ly = (n_row-1)*np.sqrt(3)/2*d0+d0
x0 = np.zeros(N)
y0 = np.zeros(N)
phi0 = N*np.pi*d0**2/4/(Lx*Ly)
d_ini = d0*np.sqrt(1+dphi/phi0)
D = np.zeros(N)+d_ini
x0 = np.zeros(N)
y0 = np.zeros(N)
for i_row in range(1, n_row+1):
for i_col in range(1, n_col+1):
ind = (i_row-1)*n_col+i_col-1
x0[ind] = (i_col-1)*d0+0.5*d0
y0[ind] = (i_row-1)*np.sqrt(3)/2*d0
y0 = y0+0.5*d0
mass = np.zeros(N) + 1
k_list = np.array([k1, k2, k1 * k2 / (k1 + k2)])
k_type = stiffness
# Steepest Descent to get energy minimum
x_ini, y_ini, p_now = hertz_FIRE_RealBoundX_ConstV_DiffK(Nt_fire, N, x0, y0, D, mass, Lx, Ly, k_list, k_type)
eigen_freq, eigen_mode, x_all, v_all = hertz_MD_VibrSP_ConstV_RealBoundX_DiffK_damp_6(k_list, k_type, B, 0, 0, Nt, dt, N, x_ini, y_ini, initial_x, initial_v, D, mass, [Lx, Ly])
return eigen_freq, eigen_mode, x_all, v_all
def evaluate_4(stiffness, damping, compression, timeSteps, dt, initial_x, initial_v, Freq_Vibr1, Amp_Vibr1, Freq_Vibr2, Amp_Vibr2):
# initial_x is the displacement from the equilibrium initial positions
k1 = 1.
k2 = 2.3
n_col = len(stiffness)
n_row = 1
N = n_col*n_row
Nt_fire = 1e6
B = damping
Nt = timeSteps
dphi = compression
d0 = 0.1
Lx = d0*n_col
Ly = (n_row-1)*np.sqrt(3)/2*d0+d0
x0 = np.zeros(N)
y0 = np.zeros(N)
phi0 = N*np.pi*d0**2/4/(Lx*Ly)
d_ini = d0*np.sqrt(1+dphi/phi0)
D = np.zeros(N)+d_ini
x0 = np.zeros(N)
y0 = np.zeros(N)
for i_row in range(1, n_row+1):
for i_col in range(1, n_col+1):
ind = (i_row-1)*n_col+i_col-1
x0[ind] = (i_col-1)*d0+0.5*d0
y0[ind] = (i_row-1)*np.sqrt(3)/2*d0
y0 = y0+0.5*d0
mass = np.zeros(N) + 1
k_list = np.array([k1, k2, k1 * k2 / (k1 + k2)])
k_type = stiffness
# Steepest Descent to get energy minimum
x_ini, y_ini, p_now = hertz_FIRE_RealBoundX_ConstV_DiffK(Nt_fire, N, x0, y0, D, mass, Lx, Ly, k_list, k_type)
cont, Ek, Ep, p, x_all, v_all, x_in1, vx_in1 = hertz_MD_VibrSP_ConstV_RealBoundX_DiffK_damp_3_c(k_list, k_type, B, 0, 0, Nt, dt, N, initial_x, x_ini, y_ini, initial_v, D, mass, [Lx, Ly], Freq_Vibr1, Amp_Vibr1, Freq_Vibr2, Amp_Vibr2)
return cont, Ek, Ep, p, x_all, v_all, x_in1, vx_in1
def showpacking(stiffness, damping, compression, timeSteps, dt, path=None):
k1 = 0.1
k2 = 1.0
n_col = len(stiffness)
n_row = 1
N = n_col*n_row
Nt_fire = 1e6
B = damping
Nt = timeSteps
dphi = compression
d0 = 0.1
Lx = d0*n_col
Ly = (n_row-1)*np.sqrt(3)/2*d0+d0
x0 = np.zeros(N)
y0 = np.zeros(N)
phi0 = N*np.pi*d0**2/4/(Lx*Ly)
d_ini = d0*np.sqrt(1+dphi/phi0)
D = np.zeros(N)+d_ini
x0 = np.zeros(N)
y0 = np.zeros(N)
for i_row in range(1, n_row+1):
for i_col in range(1, n_col+1):
ind = (i_row-1)*n_col+i_col-1
x0[ind] = (i_col-1)*d0+0.5*d0
y0[ind] = (i_row-1)*np.sqrt(3)/2*d0
y0 = y0+0.5*d0
mass = np.zeros(N) + 1
k_list = np.array([k1, k2, k1 * k2 / (k1 + k2)])
k_type = stiffness
# Steepest Descent to get energy minimum
x_ini, y_ini, p_now = hertz_FIRE_RealBoundX_ConstV_DiffK(Nt_fire, N, x0, y0, D, mass, Lx, Ly, k_list, k_type)
if path != None:
ConfigPlot_DiffStiffness_RealX(N, x_ini, y_ini, D, [Lx, Ly], k_list[k_type], 1, path, 0, 0, N-1)
return True