-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloadData.m
121 lines (121 loc) · 2.99 KB
/
loadData.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
function [t,D,Dd, Ddd,DPrime,DdPrime,DddPrime, dt,V] = loadData(e,r,Vin)
% e 1-4 corresponds to correct exercises and 5-8 corresponds to incorrect
% exercises. Pre-processing steps occur in this function.
offset = 0;
if (e==4 || e==8)
offset = 2;
end
if e<=4
load(['data/TPR Therapist Weights000' num2str(e+offset) 'Q.mat'])
else
load(['data/TPR Therapist Weights Bad Compensation000' num2str(e-4+offset) 'Q.mat'])
end
dt = 1/300;
time = size(D{r},2)*dt;
dataLength = 500;
dt = time/dataLength;
numDims = 4;
newData = zeros(numDims,dataLength,length(D));
tf = zeros(1,length(D));
for i = 1:length(D)
datai = D{i};
traj = D{i};
traj = traj(1:numDims ,:);
newDatai = zeros(numDims,dataLength);
t = (1:size(datai,2))*dt;
tf(i) = t(end);
newT = linspace(1,length(t),dataLength)*dt;
for j =1:numDims
newDatai(j,:) = interp1(t,traj(j,:), newT, 'spline', 'extrap');
end
newData(:,:,i) = newDatai;
end
D = newData(:,:,r);
D = D(:,10:floor(1/2*dataLength));
D1 = newData(:,:,1);
D1 = D1(:,10:floor(1/2*dataLength));
if exist('Vin') ~= 1
V = getV(D1-D1(:,end));%; % this is the eigenvector matrix for a signle demonstration
else
V = Vin;
end
DPrime = inv(V)*D;
t = (1:size(D,2))*dt;
n = length(t);
h = .06;
for i = 1:size(DPrime,1)
ri = ksr(t,DPrime(i,:),h,n);
end
D = V*DPrime;
Dd = 0*D;
Ddd = 0*D;
DdPrime = 0*DPrime;
DddPrime = 0*DPrime;
for i =1:size(D,1)
Dd(i,:) = d_dt(D(i,:),dt);
DdPrime(i,:) = d_dt(DPrime(i,:),dt);
Ddd(i,:) = d_dt(Dd(i,:),dt);
DddPrime(i,:) = d_dt(DdPrime(i,:),dt);
end
if DPrime(1,end)-DPrime(1,1)<0
DPrime(1,:) = -DPrime(1,:);
end
for i = 1:size(D,1)
DdPrime(i,:) = d_dt(DPrime(i,:),dt);
DddPrime(i,:) = d_dt(DdPrime(i,:),dt);
end
offset = floor(size(DdPrime,2)/2);
% crop motion once velocity falls below a threshold
ind2 = offset+find( (.5*DdPrime(1,offset:end).^2) < 0.1,1)-1;
ind1 = find(.5*DdPrime(1,1:end).^2 > 0.1,1);
if isempty(ind1)
ind1 = 2;
end
if isempty(ind2)
ind2 = size(DPrime,2)-1;
end
tmp = ind1:ind2;
DPrime = DPrime(:,tmp);
DdPrime = DdPrime(:,tmp);
DddPrime = DddPrime(:,tmp);
D = D(:,tmp);
Dd = Dd(:,tmp);
Ddd = Ddd(:,tmp);
t = t(:,tmp);
t = t-t(1);
n = length(t);
h = .05;
ri = ksr(t,DPrime(1,:),h,n);
DPrime(1,:) = ri.f;% smooth(DPrime(i,:),.2); % smooth data
h = .2;
for i = 2:size(DPrime,1)
ri = ksr(DPrime(1,:),DPrime(i,:),h,n);
DPrime(i,:) = ri.f;% smooth(DPrime(i,:),.2); % smooth data
end
for i = 1:size(D,1)
DdPrime(i,:) = d_dt(DPrime(i,:),dt);
DddPrime(i,:) = d_dt(DdPrime(i,:),dt);
end
D = V*DPrime;
Dd = V*DdPrime;
Ddd = V*DddPrime;
offset = floor(size(DdPrime,2)/2);
% crop motion again once velocity falls below a threshold
ind2 = offset+find( (.5*DdPrime(1,offset:end).^2) < 0.1,1)-1;
ind1 = find(.5*DdPrime(1,1:end).^2 > 0.1,1);
if isempty(ind1)
ind1 = 2;
end
if isempty(ind2)
ind2 = size(DPrime,2)-1;
end
tmp = ind1:ind2;
DPrime = DPrime(:,tmp);
DdPrime = DdPrime(:,tmp);
DddPrime = DddPrime(:,tmp);
D = D(:,tmp);
Dd = Dd(:,tmp);
Ddd = Ddd(:,tmp);
t = t(:,tmp);
t = t-t(1);
end