-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtransformer_toy.py
213 lines (174 loc) · 7.88 KB
/
transformer_toy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import math, copy
from torch.autograd import Variable
#from utils import *
import torch
import torch.nn as nn
import numpy as np
import torch
np.random.seed(1337)
torch.manual_seed(1337)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
class ResidualNorm (nn.Module):
def __init__ (self, size, dropout):
super(ResidualNorm, self).__init__()
self.norm = LayerNorm(size)
self.dropout = nn.Dropout(dropout)
def forward (self, x, sublayer):
return x + self.dropout(sublayer(self.norm(x)))
class MLP (nn.Module):
def __init__(self, model_depth, ff_depth, dropout):
super(MLP, self).__init__()
self.w1 = nn.Linear(model_depth, ff_depth)
self.w2 = nn.Linear(ff_depth, model_depth)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.w2(self.dropout(F.relu(self.w1(x))))
class LayerNorm(nn.Module):
"Construct a layernorm module (See citation for details)."
def __init__(self, features, eps=1e-6):
super(LayerNorm, self).__init__()
self.a_2 = nn.Parameter(torch.ones(features))
self.b_2 = nn.Parameter(torch.zeros(features))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
################################################################
# attention
class MultiHeadAttention (nn.Module):
def __init__ (self, n_heads, model_depth, bias=True):
super(MultiHeadAttention, self).__init__()
self.n_heads = n_heads
self.dk = model_depth//n_heads
self.WQ = nn.Linear(model_depth, model_depth, bias=bias)
self.WK = nn.Linear(model_depth, model_depth, bias=bias)
self.WV = nn.Linear(model_depth, model_depth, bias=bias)
self.WO = nn.Linear(model_depth, model_depth, bias=bias)
def forward (self, x, kv, mask):
batch_size = x.size(0)
Q = self.WQ(x ).view(batch_size, -1, self.n_heads, self.dk).transpose(1,2)
K = self.WK(kv).view(batch_size, -1, self.n_heads, self.dk).transpose(1,2)
V = self.WV(kv).view(batch_size, -1, self.n_heads, self.dk).transpose(1,2)
x = attention(Q, K, V, mask=mask)
x = x.transpose(1, 2).contiguous().view(batch_size, -1, self.n_heads*self.dk)
return self.WO(x)
def attention (Q,K,V, mask=None):
dk = Q.size(-1)
T = (Q @ K.transpose(-2, -1))/math.sqrt(dk)
if mask is not None:
T = T.masked_fill_(mask.unsqueeze(1)==0, -1e9)
T = F.softmax(T, dim=-1)
return T @ V
################################################################
# encoder
class Encoder (nn.Module):
def __init__ (self, n_layers, n_heads, model_depth, ff_depth, dropout):
super(Encoder, self).__init__()
self.layers = nn.ModuleList([EncoderLayer(n_heads, model_depth, ff_depth, dropout) for i in range(n_layers)])
self.lnorm = LayerNorm(model_depth)
def forward (self, x, mask):
for layer in self.layers:
x = layer(x, mask)
return self.lnorm(x)
class EncoderLayer (nn.Module):
def __init__ (self, n_heads, model_depth, ff_depth, dropout):
super(EncoderLayer, self).__init__()
self.self_attn = MultiHeadAttention(n_heads, model_depth)
self.resnorm1 = ResidualNorm(model_depth, dropout)
self.ff = MLP(model_depth, ff_depth, dropout)
self.resnorm2 = ResidualNorm(model_depth, dropout)
def forward (self, x, mask):
x = self.resnorm1(x, lambda arg: self.self_attn(arg,arg,mask))
x = self.resnorm2(x, self.ff)
return x
################################################################
# decoder
class Decoder (nn.Module):
def __init__ (self, n_layers, n_heads, model_depth, ff_depth, dropout):
super(Decoder, self).__init__()
self.layers = nn.ModuleList([DecoderLayer(n_heads, model_depth, ff_depth, dropout) for i in range(n_layers)])
self.lnorm = LayerNorm(model_depth)
def forward (self, x, src_out, src_mask, tgt_mask):
for layer in self.layers:
x = layer(x, src_out, src_mask, tgt_mask)
return self.lnorm(x)
class DecoderLayer (nn.Module):
def __init__ (self, n_heads, model_depth, ff_depth, dropout):
super(DecoderLayer, self).__init__()
self.self_attn = MultiHeadAttention(n_heads, model_depth)
self.resnorm1 = ResidualNorm(model_depth, dropout)
self.enc_attn = MultiHeadAttention(n_heads, model_depth)
self.resnorm2 = ResidualNorm(model_depth, dropout)
self.ff = MLP(model_depth, ff_depth, dropout)
self.resnorm3 = ResidualNorm(model_depth, dropout)
def forward (self, x, src_out, src_mask, tgt_mask):
x = self.resnorm1(x, lambda arg: self.self_attn(arg,arg, tgt_mask))
x = self.resnorm2(x, lambda arg: self.enc_attn(arg,src_out, src_mask))
x = self.resnorm3(x, self.ff)
return x
################################################################
# embedder
class Embedding(nn.Module):
def __init__(self, vocab_size, model_depth):
super(Embedding, self).__init__()
self.lut = nn.Embedding(vocab_size, model_depth)
self.model_depth = model_depth
self.positional = PositionalEncoding(model_depth)
def forward(self, x):
emb = self.lut(x) * math.sqrt(self.model_depth)
return self.positional(emb)
class PositionalEncoding(nn.Module):
def __init__(self, model_depth, max_len=5000):
super(PositionalEncoding, self).__init__()
pe = torch.zeros(max_len, model_depth)
position = torch.arange(0.0, max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0.0, model_depth, 2) *
-(math.log(10000.0) / model_depth))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
return x + Variable(self.pe[:, :x.size(1)], requires_grad=False)
################################################################
# transformer
class Generator (nn.Module):
def __init__(self, model_depth, vocab_size):
super(Generator, self).__init__()
self.ff = nn.Linear(model_depth, vocab_size)
def forward(self, x):
return F.log_softmax(self.ff(x), dim=-1)
class Transformer (nn.Module):
def __init__ (self, vocab_size, n_layers, n_heads, model_depth, ff_depth, dropout):
super(Transformer, self).__init__()
self.model_depth = model_depth
self.encoder = Encoder(n_layers, n_heads, model_depth, ff_depth, dropout)
self.decoder = Decoder(n_layers, n_heads, model_depth, ff_depth, dropout)
if vocab_size is not None:
if type(vocab_size) is int:
self.set_vocab_size(vocab_size)
else:
self.set_vocab_size(vocab_size[0], vocab_size[1])
def set_vocab_size (self, src_vocab_size, tgt_vocab_size=None):
if tgt_vocab_size is None:
self.src_embedder = Embedding(src_vocab_size, self.model_depth)
self.tgt_embedder = self.src_embedder
self.generator = Generator(self.model_depth, src_vocab_size)
else:
self.src_embedder = Embedding(src_vocab_size, self.model_depth)
self.tgt_embedder = Embedding(tgt_vocab_size, self.model_depth)
self.generator = Generator(self.model_depth, tgt_vocab_size)
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self, src, tgt, src_mask, tgt_mask):
#enc_out = self.encoder(self.src_embedder(src), src_mask)
enc_out = self.encoder(src, src_mask)
dec_out = self.decoder(self.tgt_embedder(tgt), enc_out, src_mask, tgt_mask)
return dec_out