-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmae_training.py
146 lines (117 loc) · 5.14 KB
/
mae_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, Dataset
import transformers
import matplotlib.pyplot as plt
import numpy as np
import tqdm
from models import *
import wandb
wandb.init(project="ssl-vision", entity="aryan9101")
if torch.cuda.is_available():
device = torch.device("cuda:0")
print("Running on a GPU")
else:
device = torch.device("cpu")
print("Running on a CPU")
cifar10_mean = torch.tensor([0.49139968, 0.48215827, 0.44653124])
cifar10_std = torch.tensor([0.24703233, 0.24348505, 0.26158768])
class Cifar10Dataset(Dataset):
def __init__(self, train):
self.transform = transforms.Compose([
transforms.RandomResizedCrop(size=32, scale=(0.2, 1.0), interpolation=3),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(cifar10_mean, cifar10_std)
])
self.dataset = torchvision.datasets.CIFAR10(root='./SSL-Vision/data',
train=train,
download=True)
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
img, label = self.dataset[idx]
img = self.transform(img)
return img, label
batch_size = 128 * torch.cuda.device_count()
trainset = Cifar10Dataset(True)
trainloader = DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=2)
testset = Cifar10Dataset(False)
testloader = DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=2)
mae = get_mae_base().to(device)
mae = torch.nn.DataParallel(mae)
mask_ratio = 0.75
learning_rate = 1.5e-4 * batch_size / 256
num_epochs = 400
warmup_fraction = 0.1
weight_decay = 0.05
# total_steps = math.ceil(len(trainset) / batch_size) * num_epochs
total_steps = num_epochs
warmup_steps = total_steps * warmup_fraction
criterion = nn.CrossEntropyLoss()
optimizer = optim.AdamW(mae.parameters(), lr=learning_rate, betas=(0.9, 0.95), weight_decay=weight_decay)
scheduler = transformers.get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps,
num_training_steps=total_steps)
train_losses = []
test_losses = []
for epoch in range(num_epochs):
train_loss = 0.0
train_acc = 0.0
train_total = 0
mae.train()
for images, labels in tqdm.tqdm(trainloader):
images = images.to(device)
labels = labels.to(device)
optimizer.zero_grad()
loss = mae(images, mask_ratio).sum()
loss.backward()
optimizer.step()
train_loss += loss.item() * images.shape[0]
train_total += images.shape[0]
train_loss = train_loss / train_total
train_losses.append(train_loss)
scheduler.step()
test_loss = 0.0
test_acc = 0.0
test_total = 0
mae.eval()
with torch.no_grad():
for images, labels in testloader:
images = images.to(device)
labels = labels.to(device)
loss = mae(images, mask_ratio).sum()
test_loss += loss.item() * images.shape[0]
test_total += images.shape[0]
test_loss = test_loss / test_total
test_losses.append(test_loss)
print(f'[{epoch + 1:2d}] train loss: {train_loss:.3f} | test_loss: {test_loss:.3f}')
if test_loss <= min(test_losses):
torch.save({'mae_state_dict' : mae.module.state_dict()}, f"./SSL-Vision/mae_timm.pth")
if (epoch + 1) % 25 == 0:
with torch.no_grad():
image_samples, _ = next(iter(testloader))
masked_images, reconstructed = mae.module.recover_reconstructed(image_samples.to(device), mask_ratio)
image_samples = image_samples.permute(0, 2, 3, 1).cpu()
masked_images = masked_images.permute(0, 2, 3, 1).detach().cpu()
reconstructed = reconstructed.permute(0, 2, 3, 1).detach().cpu()
image_samples = torch.clip((image_samples * cifar10_std + cifar10_mean) * 255, 0, 255).int()
masked_images = torch.clip((masked_images * cifar10_std + cifar10_mean) * 255, 0, 255).int()
reconstructed = torch.clip((reconstructed * cifar10_std + cifar10_mean) * 255, 0, 255).int()
fig, axes = plt.subplots(6, 6, figsize=(10, 10))
axes = np.array(axes).flatten()
for i, ax in enumerate(axes[0::3]):
ax.imshow(image_samples[i].numpy())
ax.axis('off')
for i, ax in enumerate(axes[1::3]):
ax.imshow(masked_images[i].numpy())
ax.axis('off')
for i, ax in enumerate(axes[2::3]):
ax.imshow(reconstructed[i].numpy())
fig.tight_layout()
fig.savefig(f"./SSL-Vision/mae_results-dp/epoch_{epoch + 1}.png")
plt.close(fig)
wandb.log({"train_loss": train_loss, "test_loss": test_loss, "epoch": epoch + 1})
print('Finished Training')