-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSherLockWithSVM.py
383 lines (327 loc) · 11.2 KB
/
SherLockWithSVM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
__author__ = "Armin"
import csv
import svm
from svmutil import *
import pickle
import re
learningSet = csv.reader(open("train.csv"))
# we have 5 class so, 5 classifier (opn, agr, ext, neu, con)
Features_con = []
Features_opn = []
Features_agr = []
Features_ext = []
Features_neu = []
users = []
allFeatures = []
pattern = re.compile(r"(.)\1{1,}", re.DOTALL)
def preProcess(status):
re.sub('((www\.[^\s]+)|(https?://[^\s]+))', '__LINK__', status)
re.sub(r'\d+', '', status)
return status
def FeaturesVector(status):
words = set(status)
features = {}
for word in allFeatures:
features[word] = (word in status)
return features
def getFeatures(status):
fv = []
bagsOfWord = status.split()
for word in bagsOfWord:
word = word.strip('...?!')
word = pattern.sub(r"\1\1\1", word)
fv.append(word)
return fv
def save_classifier(classifier, name):
f = open(name+'.pickle', 'wb')
pickle.dump(classifier, f)
f.close()
def load_classifier(name):
f = open(name + '.pickle', 'rb')
classifier = pickle.load(f)
f.close()
return classifier
def makeDict(features, featureList):
sortedFeatures = sorted(featureList)
feature_vector = []
labels = []
for t in features:
label = 0
Map = {}
for w in sortedFeatures:
Map[w] = 0
words = t[0]
c = t[1]
for word in words:
if word in Map:
Map[word] = 1
values = Map.values()
feature_vector.append(values)
if(c == 'y'):
label = 1
elif(c == 'n'):
label = 0
labels.append(label)
return {'feature_vector' : feature_vector, 'labels': labels}
def makeDictTest(features, featuresList):
sortedFeatures = sorted(featuresList)
feature_vector = []
for t in features:
Map = {}
for w in sortedFeatures:
Map[w] = 0
words = t
for word in words:
if word in Map:
Map[word] = 1
values = Map.values()
feature_vector.append(values)
return feature_vector
def svm(features, allFeatures):
res = makeDict(features, allFeatures)
problem = svm_problem(res['labels'], res['feature_vector'])
param = svm_parameter('-q')
param.kernel_type = LINEAR
classifier = svm_train(problem, param)
return classifier
def yesOrNo(resList):
counter = 0;
for i in resList:
if i == 0.0:
counter += 1
if(counter > len(resList)/2):
return 'n'
return 'y'
again = True
#mess = input("Do you want to load classifier? (y/n) ")
#if(mess == 'n'):
#again = True
if(again):
# extracting ans saving features
for line in learningSet:
userId = line[0]
status = line[1]
ext = line[7]
neu = line[8]
agr = line[9]
con = line[10]
opn = line[11]
# date
date = line[12]
# network features
networkSize = line[13]
nBetweenness = line[15]
density = line[16]
nBrokerage = line[18]
transitivity = line[19]
if userId not in users:
users.append(userId)
# network size
Features_con.append((networkSize, con))
Features_ext.append((networkSize, ext))
Features_agr.append((networkSize, agr))
Features_neu.append((networkSize, neu))
Features_opn.append((networkSize, opn))
# normal betweenness
Features_con.append((nBetweenness, con))
Features_ext.append((nBetweenness, ext))
Features_agr.append((nBetweenness, agr))
Features_neu.append((nBetweenness, neu))
Features_opn.append((nBetweenness, opn))
# density
Features_con.append((density, con))
Features_ext.append((density, ext))
Features_agr.append((density, agr))
Features_neu.append((density, neu))
Features_opn.append((density, opn))
# normal brokerage
Features_con.append((nBrokerage, con))
Features_ext.append((nBrokerage, ext))
Features_agr.append((nBrokerage, agr))
Features_neu.append((nBrokerage, neu))
Features_opn.append((nBrokerage, opn))
# transitivity
Features_con.append((transitivity, con))
Features_ext.append((transitivity, ext))
Features_agr.append((transitivity, agr))
Features_neu.append((transitivity, neu))
Features_opn.append((transitivity, opn))
# add to all
allFeatures.append(networkSize)
allFeatures.append(nBetweenness)
allFeatures.append(nBrokerage)
allFeatures.append(transitivity)
allFeatures.append(density)
# date feature
Features_con.append((date, con))
Features_neu.append((date, neu))
Features_agr.append((date, agr))
Features_opn.append((date, opn))
Features_ext.append((date, ext))
allFeatures.append(date)
# linguestic features
status = preProcess(status)
statusFeatures = getFeatures(status)
allFeatures.extend(statusFeatures)
Features_con.append((statusFeatures, con))
Features_neu.append((statusFeatures, neu))
Features_agr.append((statusFeatures, agr))
Features_opn.append((statusFeatures, opn))
Features_ext.append((statusFeatures, ext))
allFeatures = list(set(allFeatures))
print("Training classifiers...")
# training classifiers
SVM_CON = svm(Features_con, allFeatures)
print("Done 1 from 5.")
SVM_AGR = svm(Features_agr, allFeatures)
print("Done 2 from 5.")
SVM_NEU = svm(Features_neu, allFeatures)
print("Done 3 from 5.")
SVM_EXT = svm(Features_ext, allFeatures)
print("Done 4 from 5.")
SVM_OPN = svm(Features_opn, allFeatures)
print("Done 5 from 5.")
print("Training classifiers done.")
else:
print("loading classifiers ...")
Done = False
while(not Done):
testIn = input("Status: ")
nB = input("Normal Betweenness: ")
nBr = input("Normal Brokerage: ")
size = input("Normal Network Size: ")
tr = input("Normal Transitivity: ")
den = input("Normal Density: ")
dt = input("Date :")
FV = getFeatures(testIn);
FV.append(nBr)
FV.append(nB)
FV.append(size)
FV.append(tr)
FV.append(den)
FV.append(dt)
fv = makeDictTest(FV, allFeatures)
con_label, con_acc, con_val = svm_predict([0] * len(fv),fv, SVM_CON)
ext_label, ext_acc, ext_val = svm_predict([0] * len(fv),fv, SVM_EXT)
agr_label, agr_acc, agr_val = svm_predict([0] * len(fv),fv, SVM_AGR)
neu_label, neu_acc, neu_val = svm_predict([0] * len(fv),fv, SVM_NEU)
opn_label, opn_acc, opn_val = svm_predict([0] * len(fv),fv, SVM_OPN)
print(con_label)
print("Extraversion : " + str(yesOrNo(ext_label)))
print("Neuroticism : " + str(yesOrNo(neu_label)))
print("Agreeableness : " + str(yesOrNo(agr_label)))
print("Conscientiousness : " + str(yesOrNo(con_label)))
print("Openness : " + str(yesOrNo(opn_label)))
mess = input("Do you want to countinue? (y/n) ")
if mess == "n":
Done = True
testingSet = csv.reader(open("test.csv"))
print("Evaluating ...")
tp_con = 0
tn_con = 0
fn_con = 0
fp_con = 0
tp_ext = 0
tn_ext = 0
fn_ext = 0
fp_ext = 0
tp_agr = 0
tn_agr = 0
fn_agr = 0
fp_agr = 0
tp_opn = 0
tn_opn = 0
fn_opn = 0
fp_opn = 0
tp_neu = 0
tn_neu = 0
fn_neu = 0
fp_neu = 0
for line in testingSet:
testStatus = line[1]
testExt = line[7]
testNeu = line[8]
testAgr = line[9]
testCon = line[10]
testOpn = line[11]
testDate = line[12]
testNetworkSize = line[13]
testNBetweenness = line[15]
testDensity = line[16]
testNBrokerage = line[18]
testTransitivity = line[19]
FV = getFeatures(testStatus)
FV.append(testNetworkSize)
FV.append(testNBetweenness)
FV.append(testDensity)
FV.append(testNBrokerage)
FV.append(testDate)
FV.append(testTransitivity)
classCon = NBC_con.classify(FeaturesVector(FV))
classExt = NBC_ext.classify(FeaturesVector(FV))
classAgr = NBC_agr.classify(FeaturesVector(FV))
classNeu = NBC_neu.classify(FeaturesVector(FV))
classOpn = NBC_opn.classify(FeaturesVector(FV))
if classCon == testCon and testCon == 'y':
tp_con += 1
if classCon == testCon and testCon == 'n':
tn_con += 1
if classCon != testCon and testCon == 'y':
fp_con += 1
if classCon != testCon and testCon == 'n':
fn_con += 1
if classExt == testExt and testExt == 'y':
tp_ext += 1
if classExt == testExt and testExt == 'n':
tn_ext += 1
if classExt == testExt and testExt == 'y':
fp_ext += 1
if classExt == testExt and testExt == 'n':
fn_ext += 1
if classOpn == testOpn and testOpn == 'y':
tp_opn += 1
if classOpn == testOpn and testOpn == 'n':
tn_opn += 1
if classOpn == testOpn and testOpn == 'y':
fp_opn += 1
if classOpn == testOpn and testOpn == 'n':
fn_opn += 1
if classAgr == testAgr and testAgr == 'y':
tp_agr += 1
if classAgr == testAgr and testAgr == 'n':
tn_agr += 1
if classAgr == testAgr and testAgr == 'y':
fp_agr += 1
if classAgr == testAgr and testAgr == 'n':
fn_agr += 1
if classNeu == testNeu and testNeu == 'y':
tp_neu += 1
if classNeu == testNeu and testNeu == 'n':
tn_neu += 1
if classNeu == testNeu and testNeu == 'y':
fp_neu += 1
if classNeu == testNeu and testNeu == 'n':
fn_neu += 1
def precision(tp, tn, fp, fn):
return 0.5 * (tp/(tp+fp) + tn/(tn+fn))
def recall(tp, tn, fp, fn):
return 0.5 * (tp/(tp+fn) + tn/(tn+fp))
def F1(tp, tn, fp, fn):
pre = precision(tp, tn, fp, fn)
re = recall(tp, tn, fp, fn)
return 2 * (pre * re / (pre + re))
print "Con Pre(avg) = " + str(precision(tp_con, tn_con, fp_con, fn_con))
print "Con Re(avg) = " + str(recall(tp_con, tn_con, fp_con, fn_con))
print "Con F1(avg) = " + str(F1(tp_con, tn_con, fp_con, fn_con))
print "Agr Pre(avg) = " + str(precision(tp_agr, tn_agr, fp_agr, fn_agr))
print "Agr Re(avg) = " + str(recall(tp_agr, tn_agr, fp_agr, fn_agr))
print "Agr F1(avg) = " + str(F1(tp_agr, tn_agr, fp_agr, fn_agr))
print "Ext Pre(avg) = " + str(precision(tp_ext, tn_ext, fp_ext, fn_ext))
print "Ext Re(avg) = " + str(recall(tp_ext, tn_ext, fp_ext, fn_ext))
print "Ext F1(avg) = " + str(F1(tp_ext, tn_ext, fp_ext, fn_ext))
print "Neu Pre(avg) = " + str(precision(tp_neu, tn_neu, fp_neu, fn_neu))
print "Neu Re(avg) = " + str(recall(tp_neu, tn_neu, fp_neu, fn_neu))
print "Neu F1(avg) = " + str(F1(tp_neu, tn_neu, fp_neu, fn_neu))
print "Opn Pre(avg) = " + str(precision(tp_opn, tn_opn, fp_opn, fn_opn))
print "Opn Re(avg) = " + str(recall(tp_opn, tn_opn, fp_opn, fn_opn))
print "Opn F1(avg) = " + str(F1(tp_opn, tn_opn, fp_opn, fn_opn))