-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark.py
174 lines (142 loc) · 6.38 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import time
import random
import numpy as np
import anthropic
import openai
from typing import List, Tuple
import matplotlib.pyplot as plt
from collections import defaultdict
import nltk
from nltk.corpus import words, brown
ANTROPIC_API_KEY = "INSERT_KEY_HERE"
OPENAI_API_KEY = "INSERT_KEY_HERE"
#WORD_COUNTS = [5000, 10000, 20000, 50000, 100000]
WORD_COUNTS = [5000, 10000, 25000, 50000, 100000]
#WORD_COUNTS = [100000]
N_TRIALS_EACH_COUNT = 10
#OPENAI_MODEL = "gpt-4o-mini"
#ANTHROPIC_MODEL = "claude-3-haiku-20240307"
OPENAI_MODEL = "gpt-4o"
ANTHROPIC_MODEL = "claude-3-5-sonnet-20241022"
def setup_nltk():
"""Download required NLTK data."""
try:
nltk.data.find('corpora/words')
nltk.data.find('corpora/brown')
except LookupError:
nltk.download('words')
nltk.download('brown')
def generate_random_text(word_count: int) -> str:
"""Generate random English text of specified word count using NLTK."""
word_list = [w.lower() for w in brown.words() if w.isalpha()]
return " ".join(random.choices(word_list, k=word_count))
def measure_openai_latency_no_streaming(prompt_prefix: str, prompt_suffix: str) -> float:
"""Measure time to first byte for OpenAI API call without streaming."""
client = openai.Client(api_key=OPENAI_API_KEY)
start_time = time.time()
resp = client.chat.completions.create(
model=OPENAI_MODEL,
messages=[{"role": "user", "content": prompt_prefix + prompt_suffix}],
stream=False
)
print(resp)
first_byte_time = time.time()
return first_byte_time - start_time
def measure_anthropic_latency_no_streaming(prompt_prefix: str, prompt_suffix: str) -> float:
"""Measure time to first byte for Anthropic API call without streaming."""
client = anthropic.Anthropic(api_key=ANTROPIC_API_KEY)
start_time = time.time()
response = client.beta.prompt_caching.messages.create(
model=ANTHROPIC_MODEL,
max_tokens=100,
system=[
{
"type": "text",
"text": "You are an AI assistant tasked with analyzing poetry that might just be a jumble of words.\n",
},
{
"type": "text",
"text": prompt_prefix,
"cache_control": {"type": "ephemeral"}
}
],
messages=[{"role": "user", "content": prompt_suffix}],
)
print(response)
return time.time() - start_time
def run_benchmark(word_counts: List[int]) -> Tuple[dict, dict]:
"""Run the benchmark for both APIs with different word counts."""
openai_results = defaultdict(list)
anthropic_results = defaultdict(list)
suffix_prompt_1 = "\n \n respond to this seemingly random poem with one word"
suffix_prompt_2 = "\n \n summarize the jumble of words above with a short chinese idiom. just return the idiom nothing else"
for word_count in word_counts:
print(f"\nGenerating {word_count} words of text...")
# OpenAI benchmark
print("Running OpenAI benchmark (no streaming)...")
openai_trials = []
for trial in range(N_TRIALS_EACH_COUNT):
base_text = generate_random_text(word_count)
first_call = measure_openai_latency_no_streaming(base_text, suffix_prompt_1)
print(f"OpenAI first call (no streaming): {first_call:.2f}s")
# Add a small delay to ensure any rate limiting has cleared
time.sleep(1)
second_call = measure_openai_latency_no_streaming(base_text, suffix_prompt_2)
print(f"OpenAI second call (no streaming): {second_call:.2f}s")
openai_trials.append((first_call - second_call) / first_call * 100)
openai_results[word_count] = sum(openai_trials) / len(openai_trials)
# Add delay between services
time.sleep(2)
# Anthropic benchmark (no streaming)
print("Running Anthropic benchmark (no streaming)...")
anthropic_trials = []
for trial in range(N_TRIALS_EACH_COUNT):
base_text = generate_random_text(word_count)
first_call = measure_anthropic_latency_no_streaming(base_text, suffix_prompt_1)
print(f"Anthropic first call (no streaming): {first_call:.2f}s")
time.sleep(1)
second_call = measure_anthropic_latency_no_streaming(base_text, suffix_prompt_2)
print(f"Anthropic second call (no streaming): {second_call:.2f}s")
anthropic_trials.append((first_call - second_call) / first_call * 100)
anthropic_results[word_count] = sum(anthropic_trials) / len(anthropic_trials)
print(f"Completed benchmark for {word_count} words")
return openai_results, anthropic_results
def plot_results(openai_results: dict, anthropic_results: dict):
"""Create a bar chart comparing the results."""
word_counts = list(openai_results.keys())
x = np.arange(len(word_counts))
width = 0.35
fig, ax = plt.subplots(figsize=(10, 6))
openai_bars = ax.bar(x - width/2, openai_results.values(), width, label='OpenAI GPT-4 Latency Improvement (%)')
anthropic_bars = ax.bar(x + width/2, anthropic_results.values(), width, label='Anthropic Claude 3.5 Latency Improvement (%)')
ax.set_ylabel('Latency Improvement (%)')
ax.set_title('LLM Prompt Caching Performance Comparison')
ax.set_xticks(x)
ax.set_xticklabels([f'{count:,} words' for count in word_counts])
ax.legend()
# Add value labels on top of bars
def autolabel(rects):
for rect in rects:
height = rect.get_height()
ax.annotate(f'{height:.2f}%',
xy=(rect.get_x() + rect.get_width()/2, height),
xytext=(0, 3),
textcoords="offset points",
ha='center', va='bottom')
autolabel(openai_bars)
autolabel(anthropic_bars)
plt.tight_layout()
plt.savefig('llm_cache_benchmark.png')
plt.close()
def main():
# Setup NLTK data
setup_nltk()
print("Starting benchmark...")
openai_results, anthropic_results = run_benchmark(WORD_COUNTS)
print("\nResults:")
print("OpenAI caching improvements:", openai_results)
print("Anthropic caching improvements:", anthropic_results)
plot_results(openai_results, anthropic_results)
print("\nBenchmark complete! Results have been plotted to 'llm_cache_benchmark.png'")
if __name__ == "__main__":
main()