-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathinference.py
50 lines (45 loc) · 1.78 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import os
import librosa
import torch
import torch.nn.functional as F
import numpy as np
import soundfile as sf
from glob import glob
from tqdm import tqdm
from os.path import basename, join, exists
from vq.codec_encoder import CodecEncoder
from vq.codec_decoder import CodecDecoder
from argparse import ArgumentParser
from time import time
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--input-dir', type=str, default='.')
parser.add_argument('--ckpt', type=str, default='bigcodec.pt')
parser.add_argument('--output-dir', required=True, type=str, default='outputs')
args = parser.parse_args()
sr = 16000
print(f'Load codec ckpt from {args.ckpt}')
ckpt = torch.load(args.ckpt, map_location='cpu')
encoder = CodecEncoder()
encoder.load_state_dict(ckpt['CodecEnc'])
encoder = encoder.eval().cuda()
decoder = CodecDecoder()
decoder.load_state_dict(ckpt['generator'])
decoder = decoder.eval().cuda()
wav_dir = args.output_dir
os.makedirs(wav_dir, exist_ok=True)
wav_paths = glob(join(args.input_dir, '*.wav'))
print(f'Found {len(wav_paths)} wavs in {args.input_dir}')
st = time()
for wav_path in tqdm(wav_paths):
target_wav_path = join(wav_dir, basename(wav_path))
wav = librosa.load(wav_path, sr=sr)[0]
wav = torch.from_numpy(wav).unsqueeze(0).cuda()
wav = torch.nn.functional.pad(wav, (0, (200 - (wav.shape[1] % 200))))
with torch.no_grad():
vq_emb = encoder(wav.unsqueeze(1))
vq_post_emb, vq_code, _ = decoder(vq_emb, vq=True)
recon = decoder(vq_post_emb, vq=False).squeeze().detach().cpu().numpy()
sf.write(target_wav_path, recon, sr)
et = time()
print(f'Inference ends, time: {(et-st)/60:.2f} mins')