-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmusic_app.py
150 lines (115 loc) · 5.31 KB
/
music_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import os
import pickle
import numpy as np
import pandas as pd
from pyspark.sql import Row
from pyspark.sql import SparkSession
from pyspark.sql.types import DoubleType
from pyspark.ml.feature import MinMaxScaler
from pyspark.ml.linalg import Vectors, VectorUDT
from pyspark.sql.functions import udf, col, array
from flask import Flask, Response, render_template, redirect, url_for
app = Flask(__name__)
base_audio_dir = '/home/aaqib/Downloads/BDA-Project/BDA-Project/fma_small1'
metadata_file = 'fma_metadata/raw_tracks.csv'
metadata_df = pd.read_csv(metadata_file)
# Loading the model
with open('model.pkl', 'rb') as f:
knn = pickle.load(f)
# Function to stream audio file
def stream_audio(file_path):
def generate():
with open(file_path, 'rb') as audio_file:
while True:
audio_chunk = audio_file.read(1024)
if not audio_chunk:
break
yield audio_chunk
return Response(generate(), mimetype='audio/mpeg')
@app.route('/', endpoint='index')
def list_audio_files():
audio_files = []
for root, dirs, files in os.walk(base_audio_dir):
for file in files:
if file.endswith(('.mp3', '.wav')):
track_id = os.path.splitext(file)[0]
track_id_padded = track_id.zfill(6)
metadata_row = metadata_df[metadata_df['track_id'] == int(track_id)]
if not metadata_row.empty:
album_title = metadata_row['album_title'].values[0]
artist_name = metadata_row['artist_name'].values[0]
track_title = metadata_row['track_title'].values[0]
relative_path = os.path.relpath(os.path.join(root, file), base_audio_dir)
audio_files.append({
'file_name': file,
'album_title': album_title,
'artist_name': artist_name,
'track_title': track_title,
'relative_path': relative_path
})
return render_template('index.html', audio_files=audio_files)
@app.route('/play/<path:audio_path>')
def play_audio(audio_path):
file_path = os.path.join(base_audio_dir, audio_path)
return stream_audio(file_path)
@app.route('/loading')
def loading():
return render_template('loading.html')
# Define a UDF to flatten and calculate mean
def flatten_and_mean(features):
from itertools import chain
def flatten(lst):
for item in lst:
if isinstance(item, list):
yield from flatten(item)
else:
yield item
# Convert the potentially deeply nested list into a flat list of numbers
flattened = list(flatten(features))
# Check if the flattened list is empty
if not flattened:
return 0.0
# Compute the mean of the flattened list
return float(sum(flattened)) / len(flattened)
get_mean_udf = udf(flatten_and_mean, DoubleType())
@app.route('/recommendation/<path:audio_path>')
def recommendation(audio_path):
song_name = os.path.splitext(os.path.basename(audio_path))[0] + '.mp3'
spark = SparkSession.builder \
.appName("KNN Music Recommendations") \
.config("spark.jars.packages", "org.mongodb.spark:mongo-spark-connector_2.12:3.0.1") \
.getOrCreate()
df = spark.read.format("mongo").option("uri", "mongodb://localhost:27017/song_features.features").load()
df = df.withColumn("features", array("spectral_centroid", "mfcc", "zero_crossing_rate"))
df = df.dropna(subset=["features"])
df = df.withColumn("mean_features", get_mean_udf(col("features")))
to_vector_udf = udf(lambda x: Vectors.dense([x]), VectorUDT())
df = df.withColumn("features", to_vector_udf("mean_features"))
df = df.dropna(subset=["features"])
scaler = MinMaxScaler(inputCol="features", outputCol="scaled_features")
scaler_model = scaler.fit(df)
df = scaler_model.transform(df)
filtered_df = df.filter(df.file == song_name).select("scaled_features").collect()
if filtered_df:
query_song = filtered_df[0][0]
else:
print(f"No song found with name {song_name}")
query_song = df.select("scaled_features").collect()[0][0]
query_song_row = Row(features=query_song)
query_song_df = spark.createDataFrame([query_song_row])
transformed_query_song_df = scaler_model.transform(query_song_df)
query_song_vector = query_song_df.first().features
features_array = np.array(df.select("scaled_features").rdd.map(lambda row: row.scaled_features.toArray()).collect())
distances, indices = knn.kneighbors([query_song_vector.toArray()])
nearest_neighbor_files = [df.select("file").collect()[i][0] for i in indices[0]]
# Find paths relative to base directory, including subfolders
nearest_neighbor_files_paths = []
for neighbor_file in nearest_neighbor_files:
for root, dirs, files in os.walk(base_audio_dir):
if neighbor_file in files:
relative_path = os.path.relpath(os.path.join(root, neighbor_file), base_audio_dir)
nearest_neighbor_files_paths.append(relative_path)
break
return render_template('recommendation.html', song_name=song_name, nearest_neighbor_files=nearest_neighbor_files_paths)
if __name__ == '__main__':
app.run(debug=True, port=5001)