-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapi.py
226 lines (207 loc) · 9.01 KB
/
api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import numpy as np
import glob
import os
from multiprocessing import connection
from threading import Thread
from time import time
from config import Config
import torch
from torch.autograd import Variable as V
import torch.multiprocessing as mp
from torch.multiprocessing import Pipe
import torch.nn.utils.rnn as rnn
mp = mp.get_context('forkserver')
'''try:
set_start_method('spawn')
except RuntimeError:
pass'''
class CacheDicts:
def __init__(self, process_num):
self.dicts = [{} for _ in range(process_num)]
def add(self, keys, values, id):
for key, value in zip(keys[id], values[id]):
if key not in self.dicts[id]:
self.dicts[id][key] = value
def update(self, keys, id):
dict = self.dicts[id]
new_dict = {}
for key in keys[id]:
new_dict[key] = dict[key]
self.dicts[id] = new_dict
class APIClient:
def __init__(self, conn):
self.connection = conn
def predict(self, x):
self.connection.send(x)
return self.connection.recv()
class APIServer:
def __init__(self, config: Config):
"""
:param config:
"""
self.config = config
self.connections = []
self.model = None
self.latest_file = None
self.cache_dicts = CacheDicts(config.multi_process_num)
def get_api_client(self):
me, you = Pipe()
self.connections.append(me)
return APIClient(you)
def start_serve(self):
self.load_model()
self.prediction_worker = Thread(target=self.prediction_worker, name="prediction_worker")
self.prediction_worker.daemon = True
self.prediction_worker.start()
def load_model(self):
from lstm import Model, initialize
self.model = Model(self.config)
if self.config.use_cuda:
self.model = self.model.cuda()
list_of_files = glob.glob(self.config.model_path + '/*')
latest_file = None
if list_of_files:
latest_file = max(list_of_files, key=os.path.getctime)
model_ckpt = latest_file if not list_of_files else None
print(model_ckpt)
if model_ckpt is not None:
self.model.load_state_dict(torch.load(model_ckpt)['state_dict'])
else:
self.model.apply(initialize)
# update model whenever a ckpt file is created
def update_model(self):
try:
list_of_files = glob.glob(self.config.model_path + '/*')
if list_of_files:
latest_file = max(list_of_files, key=os.path.getctime)
if latest_file != self.latest_file:
# TODO: if restore interferes with other processes, modify this
try:
self.model.load_state_dict(torch.load(latest_file)['state_dict'])
print(latest_file)
print('loaded')
self.latest_file = latest_file
except:
return
for file in list_of_files:
if int(file.split('.')[-2].split('-')[-1]) % self.config.saving_period != 0\
and file != latest_file:
try:
os.remove(file)
except OSError:
pass
except:
pass
def prediction_worker(self):
with torch.no_grad():
while True:
self.update_model()
ready_conns = connection.wait(self.connections, timeout=0.00001)
if not ready_conns:
continue
action, lengths, cache_tmp, cur_cs, sizes, ids, ids2, rootss = [], [], [], [], [], [], [], []
#TODO: think about the boundary cases
for conn in ready_conns:
a, c, cur_c, id, roots = conn.recv()
self.cache_dicts.update(cur_c, id)
action += a
cache_tmp += c
ids += [id]
ids2 += [id]*len(a)
sizes.append(len(a))
rootss += roots
# cache = (bs, depth, hid_dim)
original_action = action
original_cache = cache_tmp
cache = []
none_id = []
for i in range(len(cache_tmp)):
if cache_tmp[i] is not None:
cache.append(self.cache_dicts.dicts[ids2[i]][cache_tmp[i]])
none_id.append(True)
else:
if self.config.arch == 'Transformer':
cache.append(torch.zeros([1, self.config.hidden_dim, self.config.depth, 2], device=self.config.device))
elif self.config.arch == 'sru':
cache.append(torch.zeros([1, self.config.hidden_dim, self.config.depth], device=self.config.device))
none_id.append(False)
lengths = [len(c) if n else 0 for c, n in zip(cache, none_id)]
action = [[a] for a in action]
#TODO: timing signal to be implemented
action = torch.tensor(action, device=self.config.device)
if self.config.arch == 'Transformer':
#TODO: implement individual cache method
# padding for decoding unnecessary
# cache is inverted in length dimension
#cache = [(i, c) for i, c in enumerate(cache)]
#this line doesn't work for non-individual method
cache = sorted(enumerate(cache), key=lambda x: len(x[1]), reverse=True)
order, cache = list(map(list, zip(*cache)))
cache = [c.unbind(-1) for c in cache.unbind(-1)]
new_tensor = [[[None]*len(order) for i in range(2)] for j in range(self.config.depth)]
for i in range(len(order)):
for j in range(self.config.depth):
for k in range(2):
new_tensor[j][k][i] = cache[i][j][k]
cache = [[flip(rnn.pad_sequence(c, batch_first=True), 1) for c in c_depth] for c_depth in cache]
bs, max_length, _ = list(cache[0][0].size())
mask = action.new_tensor([[1]*(max_length-lengths[i])+[0]*(lengths[i]) for i in range(bs)]).byte()
elif self.config.arch == 'sru':
# cache = [[for depth] for batch]
cache = list(map(list, zip(*cache)))
cache = [torch.stack(c) for c in cache]
mask = None
policy, value, cache = self.model(action, cache, mask)
if self.config.arch == 'Transformer':
cache = torch.stack([torch.stack(c,-1) for c in cache],-1)
cache = [(o, c) for o, c in zip(order, flip(cache, 1))]
cache = sorted(enumerate(cache), key=lambda x: x[0])
cache = [c[:lengths[i]+1] for i, c in enumerate(torch.unbind(cache,0))]
elif self.config.arch == 'sru':
cache = [c.unbind() for c in cache]
cache = list(map(list, zip(*cache)))
policy = policy.data.cpu().numpy()
value = value.data.cpu().numpy()
def elm_add(x,y):
new_tuple = []
for i, j in zip(x,y):
new_tuple += [tuple(list(i)+[j])]
return new_tuple
idx = 0
for conn, s, id in zip(ready_conns, sizes, ids):
conn.send((policy[idx:idx + s], value[idx:idx + s]))
self.cache_dicts.add(elm_add(original_cache[idx:idx + s], original_action[idx:idx + s]),
cache[idx:idx + s], id)
idx += s
def convert(x, config):
return torch.tensor(x.astype(np.float32), device=config.device)
def multi_meshgrid(*args):
"""
Creates a meshgrid from possibly many
elements (instead of only 2).
Returns a nd tensor with as many dimensions
as there are arguments
"""
args = list(args)
template = [1 for _ in args]
for i in range(len(args)):
n = args[i].shape[0]
template_copy = template.copy()
template_copy[i] = n
args[i] = args[i].view(*template_copy)
# there will be some broadcast magic going on
return tuple(args)
def flip(tensor, dims):
if not isinstance(dims, (tuple, list)):
dims = [dims]
indices = [torch.arange(tensor.shape[dim] - 1, -1, -1,
dtype=torch.int64) for dim in dims]
multi_indices = multi_meshgrid(*indices)
final_indices = [slice(i) for i in tensor.shape]
for i, dim in enumerate(dims):
final_indices[dim] = multi_indices[i]
flipped = tensor[final_indices]
# need to permute the final dimensions
# if dims is not consecutive, but I'm lazy
# now :-)
return flipped