-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathspeaker_recog.py
147 lines (120 loc) · 4.36 KB
/
speaker_recog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
import wave
import time
import pickle
import sounddevice as sd
import warnings
import numpy as np
from sklearn import preprocessing
from scipy.io.wavfile import read
import python_speech_features as mfcc
from sklearn.mixture import GaussianMixture
from scipy.io.wavfile import write
warnings.filterwarnings("ignore")
def calculate_delta(array):
rows, cols = array.shape
#print(rows)
#print(cols)
deltas = np.zeros((rows, 20))
N = 2
for i in range(rows):
index = []
j = 1
while j <= N:
if i - j < 0:
first = 0
else:
first = i - j
if i + j > rows - 1:
second = rows - 1
else:
second = i + j
index.append((second, first))
j += 1
deltas[i] = (array[index[0][0]] - array[index[0][1]] + (2 * (array[index[1][0]] - array[index[1][1]]))) / 10
return deltas
def extract_features(audio, rate):
mfcc_feature = mfcc.mfcc(audio, rate, 0.025, 0.01, 20, nfft=2048, appendEnergy=True)
mfcc_feature = preprocessing.scale(mfcc_feature)
#print(mfcc_feature)
delta = calculate_delta(mfcc_feature)
combined = np.hstack((mfcc_feature, delta))
return combined
def record_audio_train():
Name = (input("Please Enter Your Name:"))
for count in range(5):
FORMAT = "float32"
CHANNELS = 1
RATE = 16000
RECORD_SECONDS = 2
print("recording started")
recording = sd.rec(samplerate=RATE, channels=CHANNELS,
dtype=FORMAT, frames=RATE*RECORD_SECONDS)
sd.wait()
print("recording stopped")
if not os.path.exists('training_set'):
os.makedirs('training_set')
OUTPUT_FILENAME = Name + "-sample" + str(count) + ".wav"
WAVE_OUTPUT_FILENAME = os.path.join("training_set", OUTPUT_FILENAME)
trainedfilelist = open("training_set_addition.txt", 'a')
trainedfilelist.write(OUTPUT_FILENAME + "\n")
write(WAVE_OUTPUT_FILENAME, RATE, recording)
def record_audio_test():
FORMAT = "float32"
CHANNELS = 1
RATE = 16000
RECORD_SECONDS = 2
print("recording started")
recording = sd.rec(samplerate=RATE, channels=CHANNELS,
dtype=FORMAT, frames=RATE*RECORD_SECONDS)
sd.wait()
print("recording stopped")
OUTPUT_FILENAME = "sample.wav"
WAVE_OUTPUT_FILENAME = os.path.join("testing_set", OUTPUT_FILENAME)
write(WAVE_OUTPUT_FILENAME, RATE, recording)
def train_model():
source = "./training_set/"
if not os.path.exists('trained_models'):
os.makedirs('trained_models')
dest = "./trained_models/"
train_file = "./training_set_addition.txt"
file_paths = open(train_file, 'r')
count = 1
features = np.asarray(())
for path in file_paths:
path = path.strip()
print(path)
sr, audio = read(source + path)
vector = extract_features(audio, sr)
if features.size == 0:
features = vector
else:
features = np.vstack((features, vector))
if count == 5:
gmm = GaussianMixture(n_components=20, max_iter=200, covariance_type='diag', n_init=3)
gmm.fit(features)
# dumping the trained gaussian model
picklefile = path.split("-")[0] + ".gmm"
pickle.dump(gmm, open(dest + picklefile, 'wb'))
print('+ modeling completed for speaker:', picklefile, " with data point = ", features.shape)
features = np.asarray(())
count = 0
count = count + 1
def test_model(audio_data, sr):
modelpath = "./trained_models/"
gmm_files = [os.path.join(modelpath, fname) for fname in os.listdir(modelpath) if fname.endswith('.gmm')]
models = [pickle.load(open(fname, 'rb')) for fname in gmm_files]
speakers = [fname.split("\\")[-1].split(".gmm")[0] for fname in gmm_files]
vector = extract_features(audio_data, sr)
log_likelihood = np.zeros(len(models))
for i in range(len(models)):
gmm = models[i]
scores = np.array(gmm.score(vector))
log_likelihood[i] = scores.sum()
print(log_likelihood)
winner = np.argmax(log_likelihood)
if np.max(log_likelihood) > -35:
print("\tdetected as -", speakers[winner].split("/")[2])
return True
else:
return False