-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy path20231205_process_sims_ce192.nf
175 lines (143 loc) · 7.81 KB
/
20231205_process_sims_ce192.nf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#! usr/bin/env nextflow
if( !nextflow.version.matches('>20.0') ) {
println "This workflow requires Nextflow version 20.0 or greater -- You are running version $nextflow.version"
println "On QUEST, you can use `module load python/anaconda3.6; source activate /projects/b1059/software/conda_envs/nf20_env`"
exit 1
}
nextflow.preview.dsl=2
// nextflow.enable.dsl=2
date = new Date().format( 'yyyyMMdd_HHmmss' )
params.bin_dir = "${workflow.projectDir}/bin" // this is different for gcp
params.out = "test_Analysis_Results-${date}"
sim_dir = "/projects/b1059/projects/Ryan/Caenorhabditis_GWAS/best_panel_subsample/20231017_CE_96.192_Alloutlier/20231024_CE_96.192_Alloutlier"
params.group_qtl = 1000
params.sthresh = "BF"
params.ci_size = 150
include {get_gcta_intervals; assess_sims_INBRED; assess_sims_LOCO} from './modules/simulations.nf'
workflow{
//create a channel from the Simulations folder for CE - WILL ONLY WORK WITH ON NQTL PARAMETER SIMULATIONS
//print status messages to the console
//process.statusCommand = "echo 'Running...'"
//pull the phenotypes file
effects_ch = Channel.fromPath("${sim_dir}/Simulations/gamma/5/Phenotypes/*_*_*_*_*_ce.192*.phen")
// pull out the simulation ID from the file name
.map{ file ->
def parts = file.getBaseName().split('_')
return tuple(parts[0], parts[1], parts[2], parts[3], parts[4], parts[5], parts[6], file)
}
//effects_ch.view()
//causal variant input channel
cv_ch = Channel.fromPath(
"${sim_dir}/Simulations/gamma/5/Phenotypes/*_*_*_*_*_ce.192*.par"
)
.map{ file ->
def parts = file.getBaseName().split('_')
return tuple(parts[0], parts[1], parts[2], parts[3], parts[4], parts[5], parts[6], file)
}
//cv_ch.view()
//create a channel for the raw mapping files
raw_mappings_inbred = Channel.fromPath("${sim_dir}/Simulations/gamma/5/Mappings/*_*_*_*_*_ce.192*_lmm-exact_inbred_pca.fastGWA")
// pull out the simulation ID from the file name
.map{ file ->
def parts = file.getBaseName().split('_')
// 1 - NQTL, 2 - SIMREP, 3 - h2, 4 - maf, 5 - effect_range, 6 - pop_id, 7 - strain set
return tuple(parts[0], parts[1], parts[2], parts[3], parts[4], parts[5], parts[6], file)
}
raw_mappings_loco = Channel.fromPath("${sim_dir}/Simulations/gamma/5/Mappings/*_*_*_*_*_ce.192*_lmm-exact_pca.loco.mlma")
// pull out the simulation ID from the file name
.map{ file ->
def parts = file.getBaseName().split('_')
// 1 - NQTL, 2 - SIMREP, 3 - h2, 4 - maf, 5 - effect_range, 6 - pop_id, 7 - strain set
return tuple(parts[0], parts[1], parts[2], parts[3], parts[4], parts[5], parts[6], file)
}
// join the raw mapping channels
raw_mappings_joined = raw_mappings_inbred
.join(raw_mappings_loco, by: [0,1,2,3,4,5,6])
.join(effects_ch, by: [0,1,2,3,4,5,6])
.join(cv_ch, by: [0,1,2,3,4,5,6])
.map{ tuple ->
def (nqtl, simrep, h2, maf, effect_range, pop_id, strain_set, inbred_mapping, loco_mapping, phenotypes, causal_variants) = tuple
return [pop_id, strain_set, maf, nqtl, simrep, h2, effect_range, inbred_mapping, loco_mapping, phenotypes, causal_variants]
}
//raw_mappings_joined.view()
//raw_mappings_inbred.view()
// send the raw mapping file to get_gcta_intervals process
//channel for processed INBRED-PCA mappings - WILL ONLY WORK WITH ON NQTL PARAMETER SIMULATIONS & ONLY PULLS THE INBRED MAPPINGS
//processed_LMM-EXACT-INBRED_PCA_mapping.tsv for CB.192 vs processed_LMM-EXACT-INBRED_mapping.tsv for CE. 192 and 192
//proc_mapping_ch = Channel.fromPath("${sim_dir}/Simulations/gamma/5/Mappings/*processed_LMM-EXACT-INBRED_PCA_mapping.tsv")
// .map{ file ->
// def parts = file.getBaseName().split('_')
// return tuple(parts.take(7).join('_'), file)
// }
//proc_mapping_ch.view()
//genotype matrix input channel
gm_ch = Channel.fromPath(
"${sim_dir}/Genotype_Matrix/ce.192*_Genotype_Matrix.tsv"
)
.map{ file ->
def parts = file.getBaseName().split('_')
return tuple(parts[0], parts[1], parts[2] ,file)
}
//gm_ch.view()
//independent tests input chanel
it_ch = Channel.fromPath(
"${sim_dir}/Genotype_Matrix/ce.192*_total_independent_tests.txt"
)
.map{ file ->
def parts = file.getBaseName().split('_')
return tuple(parts[0], parts[1], parts[2] ,file)
}
// join the genotype matrix channel to the independent tests channel using the pop_id and strain set and MAF
gm_joined = gm_ch
.combine(it_ch, by: [0,1,2])
//gm_joined.view()
// join the genotype matrix channel to the raw mapping channel using the pop_id and strain set and MAF
get_intervals_input = gm_joined
.combine(raw_mappings_joined, by: [0,1,2])
.map{ tuple ->
def (pop_id, panel_id, maf, gm, it, nqtl, simrep, h2, effect_range, inbred_mapping, loco_mapping, phenotypes, causal_variants) = tuple
strain_set = pop_id + '_' + panel_id
return [strain_set, panel_id, nqtl, simrep, h2, "fake_loci_file", gm, effect_range, it, maf, inbred_mapping, loco_mapping, causal_variants, phenotypes]
}
.combine(Channel.from("${params.sthresh}"))
.combine(Channel.from("${params.group_qtl}"))
.combine(Channel.from("${params.ci_size}"))
.combine(Channel.fromPath("${params.bin_dir}/Aggregate_Mappings.R"))
.combine(Channel.fromPath("${params.bin_dir}/Find_Aggregate_Intervals.R"))
.combine(Channel.fromPath("${params.bin_dir}/Find_GCTA_Intervals.R"))
.combine(Channel.fromPath("${params.bin_dir}/Find_GCTA_Intervals_LOCO.R")) | get_gcta_intervals
get_gcta_intervals.out.assess_data_inbred_pca
.combine(Channel.fromPath("${params.bin_dir}/Assess_Sim.R")) | assess_sims_INBRED
//get_intervals_input.view()
//join the effects channel to the mapping chanel using the simulation ID
//joined_ch = effects_ch
// .join(proc_mapping_ch, by: 0)
//.join(gm_ch, by: 0)
// .join(cv_ch, by: 0)
//.map{ tuple ->
//def (sim_id, effects_file, mapping_file) = tuple
//return tuple(sim_id, effects_file, mapping_file)
// }
//joined_ch.view()
//pull out simulation parameters from the simulation id
// assess_input_ch = joined_ch
// .map{ tuple ->
// def (sim_id, effects_file, mapping_file, cv_file) = tuple
// def parts = sim_id.split('_')
// 1 - NQTL, 2 - SIMREP, 3 - h2, 4 - maf, 5 - effect, 6 - pop_id, 7 - strain set
// return [parts[5], parts[6], parts[3], parts[0], parts[1], parts[2], parts[4], effects_file, mapping_file, cv_file]
// }
//assess_input_ch.view()
//add the genotype matrix to the channel by joining the assess_input_ch to the gm_ch using the pop_id and strain set
//gm_joined = gm_ch
// .combine(assess_input_ch, by: [0,1,2])
// apply function to meet the input cardinality requirements of the assess_sims process
// .map{ tuple ->
// def (pop_id, panel_id, maf, gm, nqtl, sim_rep, h2, effect_range, phenotypes, mapping_file, var_effects) = tuple
// strain_set = pop_id + '_' + panel_id
// return [strain_set, panel_id, nqtl, sim_rep, h2, maf, effect_range, var_effects, phenotypes, gm, mapping_file, "LMM-EXACT-INBRED_PCA"]
// }
//gm_joined.view()
//gm_joined
// .combine(Channel.fromPath("${params.bin_dir}/Assess_Sim.R")) | assess_sims_INBRED | collectFile(name: "${params.out}/INBRED_PCA_all_sims.tsv")
}