Skip to content

Latest commit

 

History

History
executable file
·
318 lines (265 loc) · 11 KB

README.md

File metadata and controls

executable file
·
318 lines (265 loc) · 11 KB

Made withPython Made withPytorch Made withCuda Made withAnaconda
Supports_windows Supports_linux Supports_macos

3D Detection Stereo Based

This repository containts a real time 3D depth estmiation using stereo camera on KITTI Benchmark


ezgif com-gif-maker

Dependencies


Installation

  • Open your anaconda terminal
  • Create new conda enviroment with python 3.8.5 by running this command
conda create --name obj_det python=3.8.5
  • Activate your enviroment conda activate obj_det
  • Install dependencies following this commands
   conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c conda-forge
   pip install PyQt5 vtk tqdm matplotlib==3.3.3 easydict==1.9 tensorboard
   pip install mayavi
   conda install scikit-image shapely
   conda install -c conda-forge opencv
  • Then Navigate to Models/AnyNet/models/spn_t1 to activate SPN layer.
  • For windows, Open git bash terminal, Activate the enviroment then run sh make.sh
  • For Linux , Open the terminal, Activate the enviroment then run ./make.sh

Dataset Preparation

You need to make data directory first and construct dataset folder as following :

Stereo-3D-Detection
├── checkpoints
├── data
│   ├── <dataset folder>
│   │   │── training
│   │   │   ├──calib & velodyne & label_2 & image_2 & image_3
│   │   │── testing
├── Models
├── utils_classes
├── .
├── .

Checkpoints Preparation

You can download all checkpoints from this Drive

Stereo-3D-Detection
├── checkpoints
│   ├── anynet.tar
│   ├── sfa.pth
├── data
├── .

Demo

  • To go from stereo to 3D object detection
python demo.py

OPTIONS:

  • Choose a mode:
    • Regular mode, Add no option -> You can navigate between images by pressing any key, and to exit press ESC
    • To evaluate the pipeline, Add --evaluate
    • To generate a video, Be sure that you have adjusted the path in demo.py, Then add --generate_video
      • To generate the video with bev view, Add --with_bev
  • To Spasify How often to print time durations In case of video, Add --print_freq <no>
  • Data path is set to data/kitti by default, To change it add --data_path <datapath>
  • Anynet checkpoint path is set to checkpoints/anynet.tar by default, To change it add --pretrained_anynet <checkpoint path>
  • SFA checkpoint path is set to checkpoints/sfa.pth by default, To change it add --pretrained_sfa <checkpoint path>

Training

Train Anynet Model

You have to organize your own dataset as the following format

Stereo-3D-Detection
├── checkpoints
├── data
│   ├── <dataset>
│   │   │── training
│   │   │   ├──disp_occ_0 & image_2 & image_3
├── .
├── .

Incase of .npy Disparities:

Stereo-3D-Detection
├── checkpoints
├── data
│   ├── <dataset>
│   │   │── training
│   │   │   ├──disp_occ_0_npy & image_2 & image_3
├── .
├── .

Command:

python train_anynet.py  --maxdisp <default: 192> \ 
                        --datatype <2012/2015/other> \
                        --data_path <datapath> \
                        --save_path <default: 'results/train_anynet'> \
                        --pretrained_path <pretrained checkpoint path> \
                        --train_file <train file path if exist> \
                        --validation_file <validation file path> \
                        --with_spn <Activates Anynet last layer [RECOMMENDED]>
OPTIONS:
  • If disparity files are .npy format, Add --load_npy
  • If you want to evaluate your pretrained checkpoint without training, Add --evaluate
  • In case of datatype 2012/2015, Add --split_file
  • In case of training datatype of other, and want to train on specefic file names --train_file
  • In case of testing datatype of other, and want to validate/test on specefic file names --validation_file
  • If you want to start from specefic index, you can use this flag --index <no>

To train on Kitti Object:
python train_anynet.py  --maxdisp 192 \
                        --datatype other \
                        --data_path data/kitti/ \
                        --pretrained_path checkpoints/anynet.tar \
                        --train_file data/kitti/imagesets/train.txt \
                        --validation_file data/kitti/imagesets/val.txt \
                        --with_spn --load_npy
To train on Kitti 2015:
python train_anynet.py  --maxdisp 192 \
                        --datatype 2015 \
                        --save_path results/kitti2015 \
                        --data_path data/path-to-kitti2015/training/ \
                        --pretrained_path checkpoints/anynet.tar  \
                        --split_file data/path-to-kitti2015/split.txt \
                        --with_spn
To train on Kitti 2012:
python train_anynet.py  --maxdisp 192 \
                        --datatype 2012 \
                        --save_path results/kitti2012 \
                        --data_path data/path-to-kitti2012/training/ \
                        --pretrained_path checkpoints/anynet.tar  \
                        --split_file data/path-to-kitti2012/split.txt \
                        --with_spn

Train SFA Model

You have to organize your own dataset as the following format

Stereo-3D-Detection
├── checkpoints
├── data
│   ├── <dataset>
│   │   │── ImageSets
│   │   │   ├── train.txt & test.txt & val.txt
│   │   │── training
│   │   │   ├── velodyne & calib & label_2
├── .
├── .

Command:

python train_sfa.py
OPTIONS:
  • By default data path is set to 'data/kitti', To change it use --data_path <datapath>
  • By default pretrained path is set to 'checkpoints/sfa.pth', To change it use --pretrained_path <pretrained checkpoint path>
  • By default the name used for saved files is set to 'fpn_resnet_18', To change it use --saved_fn <name>
  • By default the batch size is set to 2, To change it use --batch_size <no>
  • You can adjust how often to print/save checkpoint/ Tensorboard freq through these flags --print_freq <no> --checkpoint_freq <no> --tensorboard_freq <no>
  • If you want to evaluate your pretrained checkpoint without training, Add --evaluate

NOTE: The text files in ImageSets are split files, you can find the split files of Kitti object dataset here


KITTI Evaluation

To evaluate the model on testing data on KITTI submition

python demo.py --testing --save_objects objects.pkl

python submit_to_kitti.py

Then compress the label_2 folder in testing directory and submit it on KITTI


Utils

Generate disparity

To generate disparity from point cloud, Be sure your folder structure is like this:

├── checkpoints
├── data
│   ├── <dataset>
│   │   │── training
│   │   │   ├── image_2 & velodyne & calib
├── .
├── .

Then run this command:

python ./tools/generate_disp.py --datapath <datapath>

OPTIONS:

  • There is --limit <no> flag if you dont to limit who much of the dataset you want to convert
  • Data path is set to data/kitti/training by default, To change it add --data_path <datapath> NOTE: When specifiying your data path make it relative to Stereo-3D-Detection directory

This will generate 2 disaprity folders at the data path location generated_disp/disp_occ_0 and generated_disp/disp_occ_0_npy, you can use any. But we recommend to use .npy files


Generate disparity/depth

To generate point cloud from disparity/depth, Be sure your folder structure is like this:

├── checkpoints
├── data
│   ├── <dataset>
│   │   │── training
│   │   │   ├── disp_occ_0 & calib
├── .
├── .

Then run this command:

python ./tools/generate_lidar.py --datapath <datapath>

OPTIONS:

  • If your converting depth images, use this flag --is_depth
  • Data path is set to data/kitti/training by default, To change it add --data_path <datapath>
  • There is --limit <no> flag if you dont to limit who much of the dataset you want to convert NOTE: When specifiying your data path make it relative to Stereo-3D-Detection directory

This will generate a velodyne folder at the data path location generated_lidar/velodyne


Visualize point cloud

To View a point cloud file .bin, You can use View_bin.py file in tools folder. Just copy it in point cloud folder, then run:

python view_bin.py

OPTIONS:

  • By default, it will show you image 000000.bin, but you can specify the image you want by using --image <image no> flag

Profiling

We added another way to track how long each function take and how frequent it have been called. you can see this by running :

sh profiling.sh

Then you will find your results in new generated file profiling.txt.


Citation

@article{wang2018anytime,
  title={Anytime Stereo Image Depth Estimation on Mobile Devices},
  author={Wang, Yan and Lai, Zihang and Huang, Gao and Wang, Brian H. and Van Der Maaten, Laurens and Campbell, Mark and Weinberger, Kilian Q},
  journal={arXiv preprint arXiv:1810.11408},
  year={2018}
}
@misc{Super-Fast-Accurate-3D-Object-Detection-PyTorch,
  author =       {Nguyen Mau Dung},
  title =        {{Super-Fast-Accurate-3D-Object-Detection-PyTorch}},
  howpublished = {\url{https://github.com/maudzung/Super-Fast-Accurate-3D-Object-Detection}},
  year =         {2020}
}