-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
88 lines (69 loc) · 3.58 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
from utils import read_video, save_video
from trackers import Tracker
import cv2
import numpy as np
from team_assigner import TeamAssigner
from player_ball_assigner import PlayerBallAssigner
from camera_movement_estimator import CameraMovementEstimator
from view_transformer import ViewTransformer
from speed_and_distance_estimator import SpeedAndDistanceEstimator
def main():
# read the video
model_path ='models/Soccer_YoloV5/best.pt'
input_video_path = 'input_videos/08fd33_4.mp4'
output_video_path = 'output_videos/output.avi'
video_frames = read_video(input_video_path)
#Initialize the tracker
tracker = Tracker(model_path=model_path)
tracks = tracker.get_objects_tracks(video_frames, read_from_stub=True,
stub_path="stubs/track_stubs1.pkl")
# Get objects positions
tracker.add_position_to_track(tracks)
# Camera movement estimator
camera_movement_estimator = CameraMovementEstimator(video_frames[0])
camera_movement_per_frame = camera_movement_estimator.get_camera_movement(video_frames,
read_from_stub=True,
stub_path="stubs/camera_movement_stubs1.pkl")
# Add the ajusted position to the tracks
camera_movement_estimator.adjust_position_to_tracks(tracks, camera_movement_per_frame)
# View transformer
view_transformer = ViewTransformer()
view_transformer.add_transformed_position_to_tracks(tracks)
# Interpolate the ball position
tracks['ball'] = tracker.interpolate_ball_position(tracks["ball"])
# Speed and distance estimator
speed_and_distance_estimator = SpeedAndDistanceEstimator()
speed_and_distance_estimator.add_speed_and_distance_to_track(tracks)
# Assign teams
team_assigner = TeamAssigner()
team_assigner.assign_team_color(video_frames[0], tracks["players"][0])
for frame_num, player_track in enumerate(tracks["players"]):
for player_id, track in player_track.items():
team = team_assigner.get_player_team(video_frames[frame_num], track["bbox"], player_id)
tracks["players"][frame_num][player_id]["team"] = team
tracks["players"][frame_num][player_id]["team_color"] = team_assigner.team_colors[team]
# Assign Ball to players and team
player_assigner = PlayerBallAssigner()
team_ball_control = []
for frame_num, player_track in enumerate(tracks["players"]):
ball_bbox = tracks["ball"][frame_num][1]["bbox"]
assigned_player = player_assigner.assign_ball_to_player(player_track, ball_bbox)
if assigned_player != -1:
tracks["players"][frame_num][assigned_player]["has_ball"] = True
team_ball_control.append(tracks["players"][frame_num][assigned_player]["team"])
elif len(team_ball_control) > 0:
team_ball_control.append(team_ball_control[-1])
else:
team_ball_control.append(0)
team_ball_control = np.array(team_ball_control)
# Draw output
## Draw objects tracks
output_video_frames = tracker.draw_annotations(video_frames, tracks, team_ball_control)
## Draw camera movement
output_video_frames = camera_movement_estimator.draw_camera_movement(output_video_frames, camera_movement_per_frame)
## Draw speed and distance
output_video_frames = speed_and_distance_estimator.draw_speed_and_distance(output_video_frames, tracks)
# save the video
save_video(output_video_frames, output_video_path)
if __name__ == "__main__":
main()