-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathHaploidHMM.py
277 lines (216 loc) · 10.7 KB
/
HaploidHMM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
from numba import jit
import numpy as np
from . import NumbaUtils
from . HaplotypeLibrary import haplotype_from_indices
def haploidHMM(individual, source_haplotypes, error, recombination_rate, threshold=0.9, calling_method='dosages'):
target_haplotype = individual.haplotypes
n_loci = len(target_haplotype)
# !!!! May need to cast the source Haplotypes to a matrix. #May also want to handle the probabilistic case.
if type(source_haplotypes) is list:
source_haplotypes = np.array(source_haplotypes)
# Expand error and recombinationRate to arrays as may need to have
# marker specific error/recombination rates.
if type(error) is float:
error = np.full(n_loci, error, dtype=np.float32)
if type(recombination_rate) is float:
recombination_rate = np.full(n_loci, recombination_rate, dtype=np.float32)
# Construct penetrance values (point estimates)
point_estimates = getHaploidPointEstimates(target_haplotype, source_haplotypes, error)
# Run forward-backward algorithm on penetrance values
# Note: don't need these probabilites if using the sample method
if calling_method != 'sample':
total_probs = haploidForwardBackward(point_estimates, recombination_rate)
# Handle the different calling methods
if calling_method == 'callhaps':
# Call haplotypes
called_haps = haploidCallHaps(total_probs, threshold)
# Call genotypes
called_genotypes = getHaploidGenotypes(called_haps, source_haplotypes)
return called_genotypes
if calling_method == 'dosages':
dosages = getHaploidDosages(total_probs, source_haplotypes)
individual.dosages = dosages
if calling_method == 'sample':
haplotype = getHaploidSample(point_estimates, recombination_rate, source_haplotypes)
individual.imputed_haplotypes = haplotype
if calling_method == 'Viterbi':
haplotype = get_viterbi(point_estimates, recombination_rate, source_haplotypes)
individual.imputed_haplotypes = haplotype
@jit(nopython=True, nogil=True)
def getHaploidDosages(hap_est, source_haplotypes):
"""Calculate dosages for a single haplotype"""
n_loci, n_haps = hap_est.shape
dosages = np.zeros(n_loci, dtype=np.float32)
for i in range(n_loci):
for j in range(n_haps):
dosages[i] += source_haplotypes[j, i] * hap_est[i, j]
return dosages
@jit(nopython=True, nogil=True)
def getHaploidSample(point_estimates, recombination_rate, source_haps):
"""Sample a haplotype"""
forward_probs = haploidForward(point_estimates, recombination_rate)
haplotype = haploidSampleHaplotype(forward_probs, source_haps, recombination_rate)
return haplotype
@jit(nopython=True, nogil=True)
def get_viterbi(point_estimates, recombination_rate, haplotype_library):
"""Get most likely haplotype using the Viterbi algorithm"""
forward_probs = haploidForward(point_estimates, recombination_rate)
indices = haploid_viterbi(forward_probs, recombination_rate)
return haplotype_from_indices(indices, haplotype_library)
@jit(nopython=True)
def haploidCallHaps(hapEst, threshold):
nHaps, nLoci = hapEst.shape
calledHaps = np.full(nLoci, -1, dtype=np.int64) # These are haplotype ids. -1 is missing.
for i in range(nLoci):
maxVal = -1
maxLoc = -1
for j in range(nHaps):
if hapEst[j, i] > threshold and hapEst[j, i] > maxVal:
maxLoc = j
maxVal = hapEst[j, i]
calledHaps[i] = maxLoc
return calledHaps
@jit(nopython=True)
def getHaploidGenotypes(calledHaps, sourceHaplotypes):
nHaps, nLoci = sourceHaplotypes.shape
calledGenotypes = np.full(nLoci, 9, dtype=np.int8) # These are haplotype ids. -1 is missing.
for i in range(nLoci):
if calledHaps[i] != -1:
calledGenotypes[i] = sourceHaplotypes[calledHaps[i], i]
return calledGenotypes
@jit(nopython=True, nogil=True)
def getHaploidPointEstimates(targetHaplotype, sourceHaplotypes, error):
nHaps, nLoci = sourceHaplotypes.shape
pointMat = np.full((nLoci, nHaps), 1, dtype=np.float32)
for i in range(nLoci):
if targetHaplotype[i] != 9:
for j in range(nHaps):
if targetHaplotype[i] == sourceHaplotypes[j, i]:
pointMat[i, j] = 1 - error[i]
else:
pointMat[i, j] = error[i]
return pointMat
@jit(nopython=True, nogil=True)
def haploidTransformProbs(previous, new, estimate, point_estimate, recombination_rate):
"""Transforms a probability distribution (over haplotypes, at a single locus)
to a probability distribution at the next locus by accounting for emission probabilities
(point_estimates) and transition probabilities (recombination_rate)
This is a core step in the forward and backward algorithms
point_estimates emission probabilities - (1D NumPy array)
recombination_rate recombination rate at this locus - (scalar)
previous probability distribution over haplotypes (hidden states) at the *previous* locus
estimate newly calculated probability distribution over haplotypes at *this* locus
new intermediate probability distribution (passed in to this function for speed)
Note: previous and estimate are updated by this function
"""
n_haps = len(previous)
# Get estimate at this locus and normalize
new[:] = previous * point_estimate
new /= np.sum(new)
# Account for recombination rate
e = recombination_rate
e1 = 1-recombination_rate
for j in range(n_haps):
new[j] = new[j]*e1 + e/n_haps
# Update distributions (in place)
for j in range(n_haps):
estimate[j] *= new[j]
previous[j] = new[j]
@jit(nopython=True, nogil=True)
def haploidOneSample(forward_probs, recombination_rate):
"""Sample one haplotype (an individual) from the forward and backward probability distributions
Returns two arrays:
sample_indices array of indices of haplotypes in the haplotype library at each locus
e.g. an individual composed of haplotypes 13 and 42 with 8 loci:
[42, 42, 42, 42, 42, 13, 13, 13]
A description of the sampling process would be nice here..."""
est = forward_probs.copy() # copy so that forward_probs is not modified
n_loci, n_haps = forward_probs.shape
prev = np.ones(n_haps, dtype=np.float32)
new = np.empty(n_haps, dtype=np.float32)
# Sampled probability distribution at one locus
sampled_probs = np.empty(n_haps, dtype=np.float32)
sample_indices = np.empty(n_loci, dtype=np.int64)
# Backwards algorithm
for i in range(n_loci-2, -1, -1): # zero indexed then minus one since we skip the boundary
# Sample at this locus
j = NumbaUtils.multinomial_sample(pvals=est[i+1, :])
sampled_probs[:] = 0
sampled_probs[j] = 1
sample_indices[i+1] = j
# Get estimate at this locus using the *sampled* distribution
# (instead of the point estimates/emission probabilities)
haploidTransformProbs(prev, new, est[i, :], sampled_probs, recombination_rate[i+1])
# No need to normalise at this locus as multinomial_sample()
# handles un-normalized probabilities
# Last sample (at the first locus)
j = NumbaUtils.multinomial_sample(pvals=est[0, :])
sample_indices[0] = j
return sample_indices
@jit(nopython=True, nogil=True)
def haploid_viterbi(forward_probs, recombination_rate):
"""Find the most likely haplotype according to the The Viterbi algorithm
Returns:
indices array of indices of haplotypes in the haplotype library at each locus
e.g. an individual composed of haplotypes 13 and 42 with 8 loci:
[42, 42, 42, 42, 42, 13, 13, 13]"""
est = forward_probs.copy() # copy so that forward_probs is not modified
n_loci, n_haps = forward_probs.shape
prev = np.ones(n_haps, dtype=np.float32)
new = np.empty(n_haps, dtype=np.float32)
# Most likely probability distribution at one locus
sampled_probs = np.empty(n_haps, dtype=np.float32)
indices = np.empty(n_loci, dtype=np.int64)
# Backwards algorithm
for i in range(n_loci-2, -1, -1): # zero indexed then minus one since we skip the boundary
# Choose the most likely state (i.e. max probability) at this locus
j = np.argmax(est[i+1, :])
sampled_probs[:] = 0
sampled_probs[j] = 1
indices[i+1] = j
# Get estimate at this locus using the most likely distribution
# (instead of the point estimates/emission probabilities)
haploidTransformProbs(prev, new, est[i, :], sampled_probs, recombination_rate[i+1])
# No need to normalise at this locus as argmax() does not depend on normalisation
# Most likely state at the first locus
j = np.argmax(est[0, :])
indices[0] = j
return indices
@jit(nopython=True, nogil=True)
def haploidSampleHaplotype(forward_probs, haplotype_library, recombination_rate):
"""Sample one haplotype (an individual) from the forward and backward probability distributions
Returns: a sampled haploytpe of length n_loci"""
indices = haploidOneSample(forward_probs, recombination_rate)
return haplotype_from_indices(indices, haplotype_library)
@jit(nopython=True, nogil=True)
def haploidForward(point_estimate, recombination_rate):
"""Calculate (unnomalized) forward probabilities"""
n_loci, n_haps = point_estimate.shape
est = point_estimate.copy()
prev = np.ones(n_haps, dtype=np.float32)
new = np.empty(n_haps, dtype=np.float32)
for i in range(1, n_loci):
# Update estimates at this locus
haploidTransformProbs(prev, new, est[i, :], point_estimate[i-1, :], recombination_rate[i])
return est
@jit(nopython=True)
def haploidBackward(point_estimate, recombination_rate):
"""Calculate (unnomalized) backward probabilities"""
n_loci, n_haps = point_estimate.shape
est = np.ones_like(point_estimate, dtype=np.float32)
prev = np.ones(n_haps, dtype=np.float32)
new = np.empty(n_haps, dtype=np.float32)
for i in range(n_loci-2, -1, -1): # zero indexed then minus one since we skip the boundary
# Update estimates at this locus
haploidTransformProbs(prev, new, est[i, :], point_estimate[i+1, :], recombination_rate[i+1])
return est
@jit(nopython=True)
def haploidForwardBackward(point_estimate, recombination_rate):
"""Calculate normalized state probabilities at each loci using the forward-backward algorithm"""
est = (haploidForward(point_estimate, recombination_rate) *
haploidBackward(point_estimate, recombination_rate))
# Return normalized probabilities
n_loci = point_estimate.shape[0]
for i in range(n_loci):
est[i, :] /= np.sum(est[i, :])
return est