-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathComparison of models.py
257 lines (197 loc) · 9.24 KB
/
Comparison of models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# -*- coding: utf-8 -*-
"""Advanced Machine Learning Project1.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1nrapqaVrfkg97WFHftmVsjoY17skfqfj
"""
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.impute import SimpleImputer
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import accuracy_score,precision_score, recall_score, f1_score
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import MinMaxScaler
def print_metrics(model_name, accuracy, precision, recall, f1):
print(f"{model_name} Metrics:")
print(f" Accuracy: {accuracy:.4f}")
print(f" Precision: {precision:.4f}")
print(f" Recall: {recall:.4f}")
print(f" F1-Score: {f1:.4f}")
print()
df = pd.read_csv("bankloan.csv")
df.info()
df=df.drop_duplicates()
X1 = df.drop('Personal.Loan', axis=1)
y1 = df['Personal.Loan']
imputer1 = SimpleImputer(strategy='mean')
X1 = pd.DataFrame(imputer1.fit_transform(X1), columns=X1.columns)
# Model Implementation
random_forest1 = RandomForestClassifier()
adaboost1 = AdaBoostClassifier()
gradient_boost1 = GradientBoostingClassifier()
# Hyperparameter Tuning
param_grid_rf1 = {'n_estimators': [50, 100, 150], 'max_depth': [None, 10, 20]}
param_grid_ab1 = {'n_estimators': [50, 100, 150], 'learning_rate': [0.01, 0.1, 0.5]}
param_grid_gb1 = {'n_estimators': [50, 100, 150], 'learning_rate': [0.01, 0.1, 0.5], 'max_depth': [3, 5, 7]}
grid_search_rf1 = GridSearchCV(random_forest1, param_grid_rf1, cv=5)
grid_search_ab1 = GridSearchCV(adaboost1, param_grid_ab1, cv=5)
grid_search_gb1 = GridSearchCV(gradient_boost1, param_grid_gb1, cv=5)
X1_train, X1_test, y1_train, y1_test = train_test_split(X1, y1, test_size=0.2, random_state=42)
grid_search_rf1.fit(X1_train, y1_train)
grid_search_ab1.fit(X1_train, y1_train)
grid_search_gb1.fit(X1_train, y1_train)
predictions_rf1 = grid_search_rf1.predict(X1_test)
predictions_ab1 = grid_search_ab1.predict(X1_test)
predictions_gb1 = grid_search_gb1.predict(X1_test)
# Metrics for the first dataset
accuracy_rf1 = accuracy_score(y1_test, predictions_rf1)
precision_rf1 = precision_score(y1_test, predictions_rf1)
recall_rf1 = recall_score(y1_test, predictions_rf1)
f1_rf1 = f1_score(y1_test, predictions_rf1)
accuracy_ab1 = accuracy_score(y1_test, predictions_ab1)
precision_ab1 = precision_score(y1_test, predictions_ab1)
recall_ab1 = recall_score(y1_test, predictions_ab1)
f1_ab1 = f1_score(y1_test, predictions_ab1)
accuracy_gb1 = accuracy_score(y1_test, predictions_gb1)
precision_gb1 = precision_score(y1_test, predictions_gb1)
recall_gb1 = recall_score(y1_test, predictions_gb1)
f1_gb1 = f1_score(y1_test, predictions_gb1)
comparison_table1 = pd.DataFrame({
'Model': ['Random Forest', 'AdaBoost', 'Gradient Boost'],
'Accuracy': [accuracy_rf1, accuracy_ab1, accuracy_gb1],
'Precision': [precision_rf1, precision_ab1, precision_gb1],
'Recall': [recall_rf1, recall_ab1, recall_gb1],
'F1-Score': [f1_rf1, f1_ab1, f1_gb1]
})
print("Comparison Table and Metrics for the Bank Loan Dataset:")
print(comparison_table1)
# Visualization
# Bar Chart
plt.bar(comparison_table1['Model'], comparison_table1['Accuracy'])
plt.title('Accuracy Comparison for the Bank Loan Dataset')
plt.ylabel('Accuracy')
plt.show()
df2 = pd.read_csv("glasstypePrediction.csv")
df.info()
df2=df2.drop_duplicates()
# Preprocessing for the second dataset
X2 = df2.drop('Type', axis=1)
y2 = df2['Type']
imputer2 = SimpleImputer(strategy='mean')
X2 = pd.DataFrame(imputer2.fit_transform(X2), columns=X2.columns)
random_forest2 = RandomForestClassifier()
adaboost2 = AdaBoostClassifier()
gradient_boost2 = GradientBoostingClassifier()
param_grid_rf2 = {'n_estimators': [50, 100, 150], 'max_depth': [None, 10, 20]}
param_grid_ab2 = {'n_estimators': [50, 100, 150], 'learning_rate': [0.01, 0.1, 0.5]}
param_grid_gb2 = {'n_estimators': [50, 100, 150], 'learning_rate': [0.01, 0.1, 0.5], 'max_depth': [3, 5, 7]}
grid_search_rf2 = GridSearchCV(random_forest2, param_grid_rf2, cv=5)
grid_search_ab2 = GridSearchCV(adaboost2, param_grid_ab2, cv=5)
grid_search_gb2 = GridSearchCV(gradient_boost2, param_grid_gb2, cv=5)
X2_train, X2_test, y2_train, y2_test = train_test_split(X2, y2, test_size=0.2, random_state=42)
grid_search_rf2.fit(X2_train, y2_train)
grid_search_ab2.fit(X2_train, y2_train)
grid_search_gb2.fit(X2_train, y2_train)
predictions_rf2 = grid_search_rf2.predict(X2_test)
predictions_ab2 = grid_search_ab2.predict(X2_test)
predictions_gb2 = grid_search_gb2.predict(X2_test)
accuracy_rf2 = accuracy_score(y2_test, predictions_rf2)
precision_rf2 = precision_score(y2_test, predictions_rf2, average='weighted')
recall_rf2 = recall_score(y2_test, predictions_rf2, average='weighted')
f1_rf2 = f1_score(y2_test, predictions_rf2, average='weighted')
accuracy_ab2 = accuracy_score(y2_test, predictions_ab2)
precision_ab2 = precision_score(y2_test, predictions_ab2, average='weighted')
recall_ab2 = recall_score(y2_test, predictions_ab2, average='weighted')
f1_ab2 = f1_score(y2_test, predictions_ab2, average='weighted')
accuracy_gb2 = accuracy_score(y2_test, predictions_gb2)
precision_gb2 = precision_score(y2_test, predictions_gb2, average='weighted')
recall_gb2 = recall_score(y2_test, predictions_gb2, average='weighted')
f1_gb2 = f1_score(y2_test, predictions_gb2, average='weighted')
# Comparison Table for the second dataset
comparison_table2 = pd.DataFrame({
'Model': ['Random Forest', 'AdaBoost', 'Gradient Boost'],
'Accuracy': [accuracy_rf2, accuracy_ab2, accuracy_gb2],
'Precision': [precision_rf2, precision_ab2, precision_gb2],
'Recall': [recall_rf2, recall_ab2, recall_gb2],
'F1-Score': [f1_rf2, f1_ab2, f1_gb2]
})
print("\nComparison Table and Metrics for the Glass Type Prediction Dataset:")
print(comparison_table2)
plt.bar(comparison_table2['Model'], comparison_table2['Accuracy'])
plt.title('Accuracy Comparison for the Glass Type Prediction Dataset')
plt.ylabel('Accuracy')
plt.show()
"""# dataset 3"""
data = pd.read_csv("data_banknote_authentication.csv")
df = pd.DataFrame(data)
df.fillna(df.mean(), inplace=True)
scaler = StandardScaler()
data[['Variance_Wavelet', 'Skewness_Wavelet', 'Curtosis_Wavelet', 'Image_Entropy']] = scaler.fit_transform(data[['Variance_Wavelet', 'Skewness_Wavelet', 'Curtosis_Wavelet', 'Image_Entropy']])
X = data.drop(columns=['Class'])
y = data['Class']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
rf_model = RandomForestClassifier(random_state=42)
ada_model = AdaBoostClassifier(random_state=42)
gb_model = GradientBoostingClassifier(random_state=42)
rf_params = {'n_estimators': [100, 200, 300], 'max_depth': [None, 10, 20]}
ada_params = {'n_estimators': [50, 100, 150], 'learning_rate': [0.1, 0.5, 1.0]}
gb_params = {'n_estimators': [100, 200, 300], 'learning_rate': [0.1, 0.5, 1.0]}
rf_grid = GridSearchCV(rf_model, rf_params, cv=5)
ada_grid = GridSearchCV(ada_model, ada_params, cv=5)
gb_grid = GridSearchCV(gb_model, gb_params, cv=5)
rf_grid.fit(X_train, y_train)
ada_grid.fit(X_train, y_train)
gb_grid.fit(X_train, y_train)
print("Best parameters for Random Forest:", rf_grid.best_params_)
print("Best parameters for AdaBoost:", ada_grid.best_params_)
print("Best parameters for Gradient Boost:", gb_grid.best_params_)
rf_model.fit(X_train, y_train)
rf_pred = rf_model.predict(X_test)
rf_accuracy = accuracy_score(y_test, rf_pred)
rf_precision = precision_score(y_test, rf_pred)
rf_recall = recall_score(y_test, rf_pred)
rf_f1 = f1_score(y_test, rf_pred)
print("Random Forest - Accuracy:", rf_accuracy, "Precision:", rf_precision, "Recall:", rf_recall, "F1-score:", rf_f1)
ada_model.fit(X_train, y_train)
ada_pred = ada_model.predict(X_test)
ada_accuracy = accuracy_score(y_test, ada_pred)
ada_precision = precision_score(y_test, ada_pred)
ada_recall = recall_score(y_test, ada_pred)
ada_f1 = f1_score(y_test, ada_pred)
print("AdaBoost - Accuracy:", ada_accuracy, "Precision:", ada_precision, "Recall:", ada_recall, "F1-score:", ada_f1)
gb_model.fit(X_train, y_train)
gb_pred = gb_model.predict(X_test)
gb_accuracy = accuracy_score(y_test, gb_pred)
gb_precision = precision_score(y_test, gb_pred)
gb_recall = recall_score(y_test, gb_pred)
gb_f1 = f1_score(y_test, gb_pred)
print("Gradient Boost - Accuracy:", gb_accuracy, "Precision:", gb_precision, "Recall:", gb_recall, "F1-score:", gb_f1)
accuracies = {
'Dataset': ['Dataset '],
'Random Forest': [rf_accuracy],
'AdaBoost': [ada_accuracy],
'Gradient Boost': [gb_accuracy]
}
# comparison table
comparison_df = pd.DataFrame(accuracies)
print(comparison_df)
# Bar Chart
plt.figure(figsize=(10, 6))
models = ['Random Forest', 'AdaBoost', 'Gradient Boost']
accuracy_values = [rf_accuracy, ada_accuracy, gb_accuracy]
plt.bar(models, accuracy_values, color=['blue', 'green', 'red'])
plt.xlabel('Ensemble Models')
plt.ylabel('Accuracy')
plt.title('Accuracy Comparison of Ensemble Models')
plt.ylim(0.8, 1.0)
plt.show()
best_models = {
'Dataset 1': rf_grid.best_estimator_,
'Dataset 2': ada_grid.best_estimator_,
'Dataset 3': gb_grid.best_estimator_
}