-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrayleigh.js
179 lines (159 loc) · 4.54 KB
/
rayleigh.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
// @flow
/**
* Rayleigh distribution
* This is continuous distribution
* https://en.wikipedia.org/wiki/Rayleigh_distribution
* @param sigma <number> - scale parameter, sigma > 0
* @returns Rayleigh distributed value
* Created by Alexey S. Kiselev
*/
import type { MethodError, RandomArray } from '../types';
import type { IDistribution } from '../interfaces';
import prng from '../prng/prngProxy';
class Rayleigh implements IDistribution {
sigma: number;
constructor(sigma: number): void {
this.sigma = Number(sigma);
}
/**
* Generates a random number
* @returns a Rayleigh distributed number
*/
random(): number {
let epsilon = 0.00000001;
let u: number = Math.min((prng.random(): any) + epsilon, 1 - epsilon);
return this._random(u);
}
/**
* Generates next seeded random number
* @returns {number}
*/
next(): number {
let epsilon = 0.00000001;
let u: number = Math.min((prng.next(): any) + epsilon, 1 - epsilon);
return this._random(u);
}
_random(u: number): number {
return this.sigma * Math.sqrt(-2 * Math.log(u));
}
/**
* Generates Rayleigh distributed numbers
* @param n: number - Number of elements in resulting array, n > 0
* @returns Array<number> - Rayleigh distributed numbers
*/
distribution(n: number): RandomArray {
let rayleighArray: RandomArray = [],
epsilon = 0.00000001,
random: RandomArray = (prng.random(n): any),
u: number;
for(let i: number = 0; i < n; i += 1){
u = Math.min(random[i] + epsilon, 1 - epsilon);
rayleighArray[i] = this._random(u);
}
return rayleighArray;
}
/**
* Error handling
* @returns {boolean}
*/
isError(): MethodError {
if(!this.sigma) {
return {error: 'Rayleigh distribution: you should point "sigma" (scale) numerical value'};
}
if(this.sigma <= 0) {
return {error: 'Rayleigh distribution: parameter "sigma" (scale) must be a positive value'};
}
return { error: false };
}
/**
* Refresh method
* @param newSigma: number - new parameter "sigma"
* This method does not return values
*/
refresh(newSigma: number): void {
this.sigma = Number(newSigma);
}
/**
* Class .toString method
* @returns {string}
*/
toString(): string {
let info = [
'Rayleigh Distribution',
`Usage: unirand.rayleigh(${this.sigma}).random()`
];
return info.join('\n');
}
/**
* Mean value
* Information only
* For calculating real mean value use analyzer
*/
get mean(): number {
return this.sigma * Math.sqrt(Math.PI / 2);
}
/**
* Median value
* Information only
* For calculating real median value use analyzer
*/
get median(): number {
return this.sigma * Math.sqrt(2 * Math.log(2));
}
/**
* Mode value - value, which appears most often
* Information only
* For calculating real mode value use analyzer
*/
get mode(): number {
return this.sigma;
}
/**
* Variance value
* Information only
* For calculating real variance value use analyzer
*/
get variance(): number {
return Math.pow(this.sigma, 2) * (4 - Math.PI) / 2;
}
/**
* Entropy value
* Information only
* For calculating real entropy value use analyzer
*/
get entropy(): number {
return 1.28860783245076643030325605 + Math.log(this.sigma / 1.4142135623730950488016887242097);
}
/**
* Skewness value
* Information only
* For calculating real skewness value use analyzer
*/
get skewness(): number {
return 2 * Math.sqrt(Math.PI) * (Math.PI - 3) / Math.pow(4 - Math.PI, 1.5);
}
/**
* Kurtosis value
* Information only
* For calculating real kurtosis value use analyzer
*/
get kurtosis(): number {
return - (6 * Math.pow(Math.PI, 2) - 24 * Math.PI + 16) / Math.pow(4 - Math.PI, 2);
}
/**
* All parameters of distribution in one object
* Information only
*/
get parameters(): {} {
return {
mean: this.mean,
median: this.median,
mode: this.mode,
variance: this.variance,
entropy: this.entropy,
skewness: this.skewness,
kurtosis: this.kurtosis
};
}
}
module.exports = Rayleigh;