-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgan.py
351 lines (301 loc) · 11.6 KB
/
gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
""" Training and testing functions.
References:
Learning rate scheduling docs:
https://flax.readthedocs.io/en/latest/guides/lr_schedule.html
https://optax.readthedocs.io/en/latest/api.html
Author Implementation:
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/e2c7618a2f2bf4ee012f43f96d1f62fd3c3bec89/models/cycle_gan_model.py
"""
from functools import partial
from typing import Callable, Sequence, Tuple
from flax.training.train_state import TrainState
import jax.numpy as jnp
import jax
import optax
from networks import Discriminator, Generator, GanLoss, L1Loss
class CycleGan:
"""A collection of modules and logic for CycleGAN training and inference."""
def __init__(self, opts):
"""Initialize all modules.
Each module is essentially a stateless function. Parameter states are
passed in to forward and backward pass methods.
"""
self.G = Generator(
output_nc=opts.output_nc,
ngf=opts.ngf,
n_res_blocks=opts.n_res_blocks,
dropout_rate=opts.dropout_rate,
upsample_mode=opts.upsample_mode,
initializer=opts.initializer,
)
self.D = Discriminator(
ndf=opts.ndf,
netD=opts.netD,
n_layers=opts.n_layers,
initializer=opts.initializer,
)
self.criterion_gan = GanLoss(gan_mode=opts.gan_mode)
self.criterion_cycle = L1Loss()
self.criterion_id = L1Loss()
self.opts = opts
self.lambda_A = opts.lambda_A # weight of loss on inputs from set A
self.lambda_B = opts.lambda_B # weight of loss on inputs from set B
self.lambda_id = opts.lambda_id # weight of identity loss
def get_generator_params(self, rngs, input_shape):
"""
Reference: https://github.com/google/jax/issues/421
"""
params_G_A = self.G.init(rngs, jnp.ones(input_shape), train=False)["params"]
params_G_B = self.G.init(rngs, jnp.ones(input_shape), train=False)["params"]
return (params_G_A, params_G_B)
def get_discriminator_params(self, rngs, input_shape):
params_D = self.D.init(rngs, jnp.ones(input_shape))["params"]
return params_D
def run_generator_forward(self, rngs, params, real_data, train=True):
"""
Args:
rngs: {"dropout": ...}
params: (params_G_A, params_G_B)
real_data: (real_A, real_B)
train: toggle that affects dropout layer
"""
params_G_A = params[0]
params_G_B = params[1]
real_A = real_data[0]
real_B = real_data[1]
# Forward through G
fake_B = self.G.apply(
{"params": params_G_A}, real_A, train=train, rngs=rngs
) # G_A(A)
recover_A = self.G.apply(
{"params": params_G_B}, fake_B, train=train, rngs=rngs
) # G_B(G_A(A))
fake_A = self.G.apply(
{"params": params_G_B}, real_B, train=train, rngs=rngs
) # G_B(B)
recover_B = self.G.apply(
{"params": params_G_A}, fake_A, train=train, rngs=rngs
) # G_A(G_B(B))
return (fake_B, recover_A, fake_A, recover_B)
def run_single_generator_forward(self, rngs, params, real_data, start="A"):
"""
Args:
rngs: {"dropout": ...}
params: (params_G_A, params_G_B)
real_data: (real_A, real_B)
start: whether starting from set A or B
"""
params_G_A = params[0]
params_G_B = params[1]
# Forward through G
if start == "A":
fake = self.G.apply(
{"params": params_G_A}, real_data, train=False, rngs=rngs
) # G_A(A)
recover = self.G.apply(
{"params": params_G_B}, fake, train=False, rngs=rngs
) # G_B(G_A(A))
elif start == "B":
fake = self.G.apply(
{"params": params_G_B}, real_data, train=False, rngs=rngs
) # G_A(A)
recover = self.G.apply(
{"params": params_G_A}, fake, train=False, rngs=rngs
) # G_B(G_A(A))
else:
raise ValueError("direction must be A or B")
return (fake, recover)
def run_generator_backward(
self, rngs, params, generated_data, real_data, train=True
):
"""
Args:
rngs: {"dropout": ...}
params: (params_G_A, params_G_B, params_D_A, params_D_B)
generated_data: (fake_B, recover_A, fake_A, recover_B)
real_data: (real_A, real_B)
"""
params_G_A = params[0]
params_G_B = params[1]
params_D_A = params[2]
params_D_B = params[3]
fake_B = generated_data[0]
recover_A = generated_data[1]
fake_A = generated_data[2]
recover_B = generated_data[3]
real_A = real_data[0]
real_B = real_data[1]
# Compute 3-criteria loss function
# GAN loss D_A(G_A(A))
loss_G_A = self.criterion_gan(
self.D.apply({"params": params_D_A}, fake_B), target_is_real=True
)
# GAN loss D_B(G_B(B))
loss_G_B = self.criterion_gan(
self.D.apply({"params": params_D_B}, fake_A), target_is_real=True
)
# Cycle loss ||G_B(G_A(A)) - A||
loss_cycle_A = self.criterion_cycle(recover_A, real_A) * self.lambda_A
# Cycle loss ||G_A(G_B(B)) - B||
loss_cycle_B = self.criterion_cycle(recover_B, real_B) * self.lambda_B
# G_A should be identity if real_B is fed: ||G_A(B) - B||
id_A = self.G.apply({"params": params_G_A}, real_B, train=train, rngs=rngs)
loss_id_A = self.criterion_id(id_A, real_B) * self.lambda_B * self.lambda_id
# G_B should be identity if real_A is fed: ||G_B(A) - A||
id_B = self.G.apply({"params": params_G_B}, real_A, train=train, rngs=rngs)
loss_id_B = self.criterion_id(id_B, real_A) * self.lambda_A * self.lambda_id
return loss_G_A + loss_G_B + loss_cycle_A + loss_cycle_B + loss_id_A + loss_id_B
def run_discriminator_backward(self, params, real, fake):
"""
Args:
params: params for one discriminator
real: real image from dataset
fake: generated image from image pool
"""
# Real
pred_real = self.D.apply({"params": params}, real)
loss_D_real = self.criterion_gan(pred_real, True)
# Fake
# TODO: CHANGE THIS DETACH
# @source: https://github.com/google/jax/issues/2025
# Idk what this means, should look more into this
pred_fake = self.D.apply({"params": params}, jax.lax.stop_gradient(fake))
loss_D_fake = self.criterion_gan(pred_fake, False)
# Combined loss and calculate gradients
loss_D = (loss_D_real + loss_D_fake) * 0.5
return loss_D
def create_generator_state(
key: jnp.ndarray,
model: CycleGan,
input_shape: Sequence[int],
lr_schedule_fn: Callable,
beta_1: float,
):
key, params_key = jax.random.split(key)
key, dropout_key = jax.random.split(key)
params_G = model.get_generator_params(
{"params": params_key, "dropout": dropout_key}, input_shape
) # get params of both G_A and G_B
tx = optax.adam(lr_schedule_fn, b1=beta_1)
return key, TrainState.create(
apply_fn=None,
params=params_G,
tx=tx,
)
def create_discriminator_state(
key: jnp.ndarray,
model: CycleGan,
input_shape: Sequence[int],
lr_schedule_fn: Callable,
beta_1: float,
):
key, params_key = jax.random.split(key)
params = model.get_discriminator_params(
{"params": params_key}, input_shape
) # parameter for eithe G_A or G_B
tx = optax.adam(lr_schedule_fn, b1=beta_1)
return key, TrainState.create(
apply_fn=None,
params=params,
tx=tx,
)
@partial(jax.jit, static_argnums=1)
def generator_step(
key: jnp.ndarray,
model: CycleGan,
g_state: TrainState,
d_A_state: TrainState,
d_B_state: TrainState,
real_data: Tuple[jnp.ndarray, jnp.ndarray],
):
"""The generator is updated by generating data and letting the discriminator
critique it. It's loss goes down if the discriminator wrongly predicts it to
to be real data.
"""
key, dropout_key = jax.random.split(key)
def loss_fn(params): # param: g_state.params
generated_data = model.run_generator_forward(
{"dropout": dropout_key}, params, real_data, train=True
)
backward_params = (params[0], params[1], d_A_state.params, d_B_state.params)
loss = model.run_generator_backward(
{"dropout": dropout_key},
backward_params,
generated_data,
real_data,
train=True,
)
return loss, generated_data
grad_fn = jax.value_and_grad(
loss_fn, has_aux=True
) # grad_fn has the same argument as loss_fn, but evaluate both loss_fn and grad of loss_fn
(loss, generated_data), grads = grad_fn(g_state.params)
new_g_state = g_state.apply_gradients(grads=grads)
# what about metrics?
return key, loss, new_g_state, generated_data
@partial(jax.jit, static_argnums=1)
def generator_validation(
key: jnp.ndarray,
model: CycleGan,
g_state: TrainState,
d_A_state: TrainState,
d_B_state: TrainState,
real_data: Tuple[jnp.ndarray, jnp.ndarray],
):
key, dropout_key = jax.random.split(key)
generated_data = model.run_generator_forward(
{"dropout": dropout_key}, g_state.params, real_data, train=False
)
backward_params = (
g_state.params[0],
g_state.params[1],
d_A_state.params,
d_B_state.params,
)
loss = model.run_generator_backward(
{"dropout": dropout_key},
backward_params,
generated_data,
real_data,
train=False,
)
return key, loss, generated_data
@partial(jax.jit, static_argnums=0)
def discriminator_step(
model: CycleGan,
d_A_state: TrainState,
d_B_state: TrainState,
real_data: Tuple[jnp.ndarray, jnp.ndarray],
fake_data: Tuple[jnp.ndarray, jnp.ndarray],
):
"""The discriminator is updated by critiquing both real and generated data.
Its loss goes down as it predicts correctly if images are real or generated.
"""
# Step for D_A
def loss_fn_A(params):
loss = model.run_discriminator_backward(params, real_data[1], fake_data[1])
return loss
grad_fn = jax.value_and_grad(loss_fn_A)
loss_A, grads = grad_fn(d_A_state.params)
new_d_A_state = d_A_state.apply_gradients(grads=grads)
# Step for D_B
def loss_fn_B(params):
loss = model.run_discriminator_backward(params, real_data[0], fake_data[0])
return loss
grad_fn = jax.value_and_grad(loss_fn_B)
loss_B, grads = grad_fn(d_B_state.params)
new_d_B_state = d_B_state.apply_gradients(grads=grads)
return loss_A, loss_B, new_d_A_state, new_d_B_state
@partial(jax.jit, static_argnums=[1, 4])
def generator_prediction(
key: jnp.ndarray,
model: CycleGan,
g_state: TrainState,
real_data: jnp.ndarray,
start: str,
):
key, dropout_key = jax.random.split(key)
generated_data = model.run_single_generator_forward(
{"dropout": dropout_key}, g_state.params, real_data, start=start
)
return key, generated_data