-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
312 lines (274 loc) · 11.1 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import re
import json
from IPython import embed
def get_status_from_scrambles(scramble, scramble_type, need_preprocess=False) -> list:
status = SCRAMBLE_TYPE_TO_STATE_FUNC[scramble_type](scramble)
if need_preprocess:
status = SCRAMBLE_TYPE_TO_PREPROCESS_FUNC[scramble_type](status)
return status
# cstimer output file -> {idx -> scramble status}
# scramble status: (scramble, scarmble status, prefer, ...)
def load_data_from_file(path, session_id, scramble_type, need_preprocess=False) -> list[tuple]:
with open(path, 'r') as f:
raw_data = json.load(f)
ss_data = raw_data.get(f"session{session_id}", {})
if not ss_data:
print("[warning] not session data ")
return
ret_data = []
for did, dt in enumerate(ss_data):
pf = False
if len(dt) > 4 and type(dt[4][-1]) == bool:
pf = dt[4][-1]
else:
print(f'[warning] not prefer setting in session: {session_id}-{did}')
status = get_status_from_scrambles(dt[1], scramble_type, need_preprocess)
# fixed format:
# [0]: scramble
# [1]: scramble state
# [2]: prefer against to last one
ret_data.append((
dt[1],
status,
pf
))
# print(len(ss_data))
# print(ret_data)
return ret_data
'''
print to this form
0 1 2 9
3 4 5 y2 10 11 12
6 7 8 13
'''
def pretty_print_clock(clock_status: list[int]):
s = clock_status
print(f"{s[0]} {s[1]} {s[2]}"+" "*8+f"{s[9]}")
print(f"{s[3]} {s[4]} {s[5]}"+" y2 "+f"{s[10]} {s[11]} {s[12]}")
print(f"{s[6]} {s[7]} {s[8]}"+" "*8+f"{s[13]}")
def clock_status_preprocess(clock_status: list[int]):
return [s/11. for s in clock_status]
def nnn_status_preprocess(nnn_status: list[int]):
return [s/5. for s in nnn_status]
# due to the Rubiks's clock ops satisfy Abelian group
# let's write it out by hand
def clock_scramble_to_status(scramble_str: str) -> list[int]:
move_array = [
[ 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0], # UR
[ 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0], # DR
[ 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0], # DL
[ 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], # UL
[ 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0], # U
[ 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0], # R
[ 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0], # D
[ 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0], # L
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0], # ALL
[11, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0], # UR
[ 0, 0, 0, 0, 0, 0,11, 0, 0, 0, 0, 1, 1, 1], # DR
[ 0, 0, 0, 0, 0, 0, 0, 0,11, 0, 1, 1, 0, 1], # DL
[ 0, 0,11, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0], # UL
[11, 0,11, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0], # U
[11, 0, 0, 0, 0, 0,11, 0, 0, 1, 0, 1, 1, 1], # R
[ 0, 0, 0, 0, 0, 0,11, 0,11, 0, 1, 1, 1, 1], # D
[ 0, 0,11, 0, 0, 0, 0, 0,11, 1, 1, 1, 0, 1], # L
[11, 0,11, 0, 0, 0,11, 0,11, 1, 1, 1, 1, 1] # ALL
]
move2idx = {
"UR": 0,
"DR": 1,
"DL": 2,
"UL": 3,
"U": 4,
"R": 5,
"D": 6,
"L": 7,
"ALL": 8,
}
ret_status = [0] * 14
y2_times = scramble_str.count("y2")
if y2_times > 1:
print(f"wrong clock scramble with y2 x {y2_times}")
return []
if y2_times == 1:
front_scr, back_scr = scramble_str.split("y2")
front_scr = front_scr.strip().split(" ")
back_scr = back_scr.strip().split(" ")
else:
front_scr = scramble_str.strip().split(" ")
back_scr = []
front_scr = [s for s in front_scr if s!=""]
back_scr = [s for s in back_scr if s!=""]
def exec_move(status, op, is_back=False):
mt = re.match(r'^([A-Z]{1,3})(.*)', op)
if not mt:
print(f'error in exec_move with op:`{op}`')
return
move = mt.group(1)
step = mt.group(2)
clk_wise = 1 if step[-1] == '+' else -1
step = int(step[:-1])
offset_idx = 9 if is_back else 0
mv_vec = move_array[move2idx[move]+offset_idx]
for i, mv_bias in enumerate(mv_vec):
cur_s = status[i]
status[i] = cur_s + clk_wise * step * mv_bias
for op in front_scr:
exec_move(ret_status, op)
# print(op)
# pretty_print_clock(ret_status)
for op in back_scr:
exec_move(ret_status, op, True)
# print(op)
# pretty_print_clock(ret_status)
ret_status = [c%12 for c in ret_status]
return ret_status
# nnn cube. copied from cstimer, make it into three parts:
# 1. cubeutil.parseScramble -> parse_nnn_scramble
# 2. image.nnnImage.doslice -> do_nnn_slice
# 3. image.nnnImage.getPosit -> nnn_scramble_to_status
nnn_scramble_reg = re.compile(r'^([\d]+(?:-\d+)?)?([FRUBLDfrubldzxySME])(?:([w])|&sup([\d]);)?([2\'])?$')
def parse_nnn_scramble(move_map: str, scramble: str="") -> list[list[int]]:
moveseq = []
moves = scramble.strip().split(' ')
for move in moves:
m = nnn_scramble_reg.match(move)
if m is None:
continue
f = "FRUBLDfrubldzxySME".find(m.group(2))
# 如果是中层转动
if f > 14:
p = "2'".find(m.group(5) or 'X') + 2
f = [0, 4, 5][f % 3]
moveseq.append([move_map.index("FRUBLD"[f]), 2, p])
moveseq.append([move_map.index("FRUBLD"[f]), 1, 4 - p])
continue
w = (m.group(1) or '').split('-')
w2 = int(w[1]) if len(w) > 1 else -1
w = f < 12 and (int(w[0]) if w[0] else int(m.group(4) or 0) or ((m.group(3) == "w" or f > 5) and 2) or 1) or -1
p = (f < 12 and 1 or -1) * ("2'".find(m.group(5) or 'X') + 2)
# [face, width, clockwise step, idk]
# 最后一个参数需要每步是形如 1-3R 这样的转动
moveseq.append([move_map.index("FRUBLD"[f % 6]), w, p, w2])
return moveseq
# f: face, [ D L B U R F ]
# d: which slice, in [0, size-1)
# q: [ 2 ']
def do_nnn_slice(size: int, posit: list[int], f, d, q):
s2 = size * size
if f > 5:
f -= 6
for k in range(q):
for i in range(size):
if f == 0:
f1 = 6 * s2 - size * d - size + i
f2 = 2 * s2 - size * d - 1 - i
f3 = 3 * s2 - size * d - 1 - i
f4 = 5 * s2 - size * d - size + i
elif f == 1:
f1 = 3 * s2 + d + size * i
f2 = 3 * s2 + d - size * (i + 1)
f3 = s2 + d - size * (i + 1)
f4 = 5 * s2 + d + size * i
elif f == 2:
f1 = 3 * s2 + d * size + i
f2 = 4 * s2 + size - 1 - d + size * i
f3 = d * size + size - 1 - i
f4 = 2 * s2 - 1 - d - size * i
elif f == 3:
f1 = 4 * s2 + d * size + size - 1 - i
f2 = 2 * s2 + d * size + i
f3 = s2 + d * size + i
f4 = 5 * s2 + d * size + size - 1 - i
elif f == 4:
f1 = 6 * s2 - 1 - d - size * i
f2 = size - 1 - d + size * i
f3 = 2 * s2 + size - 1 - d + size * i
f4 = 4 * s2 - 1 - d - size * i
elif f == 5:
f1 = 4 * s2 - size - d * size + i
f2 = 2 * s2 - size + d - size * i
f3 = s2 - 1 - d * size - i
f4 = 4 * s2 + d + size * i
c = posit[f1]
posit[f1] = posit[f2]
posit[f2] = posit[f3]
posit[f3] = posit[f4]
posit[f4] = c
if d == 0:
for i in range(size // 2):
for j in range((size - 1) // 2):
f1 = f * s2 + i + j * size
f3 = f * s2 + (size - 1 - i) + (size - 1 - j) * size
if f < 3:
f2 = f * s2 + (size - 1 - j) + i * size
f4 = f * s2 + j + (size - 1 - i) * size
else:
f4 = f * s2 + (size - 1 - j) + i * size
f2 = f * s2 + j + (size - 1 - i) * size
c = posit[f1]
posit[f1] = posit[f2]
posit[f2] = posit[f3]
posit[f3] = posit[f4]
posit[f4] = c
def nnn_scramble_to_status(size: int, scramble: str) -> list[int]:
cnt = 0
posit = []
for i in range(6):
for f in range(size * size):
posit.append(i)
cnt += 1
# moves = cubeutil.parse_scramble(moveseq, "DLBURF", True)
moves = parse_nnn_scramble("DLBURF", scramble)
for s in range(len(moves)):
for d in range(moves[s][1]):
# do_nnn_slice(moves[s][0], d, moves[s][2], size)
do_nnn_slice(size, posit, moves[s][0], d, moves[s][2])
if moves[s][1] == -1:
for d in range(size - 1):
do_nnn_slice(size, posit, moves[s][0], d, -moves[s][2])
do_nnn_slice(size, posit, (moves[s][0] + 3) % 6, 0, moves[s][2] + 4)
return posit
SCRAMBLE_TYPE_TO_STATE_FUNC = {
"clock": clock_scramble_to_status,
"222": lambda s: nnn_scramble_to_status(2, s),
"333": lambda s: nnn_scramble_to_status(3, s),
"444": lambda s: nnn_scramble_to_status(4, s),
"555": lambda s: nnn_scramble_to_status(5, s),
"666": lambda s: nnn_scramble_to_status(6, s),
"777": lambda s: nnn_scramble_to_status(7, s),
}
SCRAMBLE_TYPE_TO_PREPROCESS_FUNC = {
"clock": clock_status_preprocess,
"222": nnn_status_preprocess,
"333": nnn_status_preprocess,
"444": nnn_status_preprocess,
"555": nnn_status_preprocess,
"666": nnn_status_preprocess,
"777": nnn_status_preprocess,
}
def get_parameter_number(model):
total_num = sum(p.numel() for p in model.parameters())
trainable_num = sum(p.numel() for p in model.parameters() if p.requires_grad)
return {'Total': total_num, 'Trainable': trainable_num}
if __name__ == "__main__":
load_data_from_file("./data/ye_clock_1.json", 1, "clock")
status = clock_scramble_to_status("UR3+ DR5+ DL2- UL4- U4- R2+ D4- L4+ ALL2+ y2 U2- R1- D5- L4+ ALL3+")
print(status)
status = clock_scramble_to_status("UR3+ DR5+ DL2- UL4- U4- R2+ D4- L4+ ALL2+ ")
print(status)
status = clock_scramble_to_status("y2 UR3+ DR5+ DL2- UL4- U4- R2+ D4- L4+ ALL2+ ")
print(status)
status = clock_scramble_to_status("")
print(status)
print("------------nnn-----------")
move_seq = parse_nnn_scramble("URFDLB", "U' F L R B D u l 1-3Fw")
print(move_seq)
# URFDLB
status = nnn_scramble_to_status(3, "y3")
print(status)
status = nnn_scramble_to_status(3, "R")
print(status)
status = nnn_scramble_to_status(3, "U' F D' R U L' D R F2 U2 R2 D' B2 R2 D F2 L2 B2 L2 D'")
print(status)
status = SCRAMBLE_TYPE_TO_STATE_FUNC["333"]("U' F D' R U L' D R F2 U2 R2 D' B2 R2 D F2 L2 B2 L2 D'")
print(status)