-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtestV2.py
106 lines (82 loc) · 3.77 KB
/
testV2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import os
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader
import utils
from sklearn.metrics import roc_auc_score, roc_curve, auc, balanced_accuracy_score
import model as rawnet
#import yaml
from metrics import *
from loops import test_loop
import src
from argparser import parse_args
import parameters as param
import matplotlib.pyplot as plt
import seaborn as sns
from tqdm import tqdm
def main(args):
model_path = os.path.join(param.models_dir, "rawnet_log_2s_03.pth")
results_path = os.path.join(param.results_dir, "results_new_dataset.csv")
emb_path = os.path.join(param.embeddings_dir, "embeddings_new_dataset")
os.makedirs(emb_path, exist_ok=True)
print(model_path)
print(results_path)
print(emb_path)
# select the computation device:
src.torch_utils.set_gpu(-1)
# set backend here to create GPU processes
src.torch_utils.set_backend()
src.torch_utils.set_seed()
# define the computation platform for torch:
platform = src.torch_utils.platform()
# Load test set, initialize Dataloaders
targets_test, file_test, path_test, original_test = utils.genDataFrame(
os.path.join(param.csv_dir, 'modified_dataset2.csv'),
is_eval=True, is_mod=True)
test_set1 = utils.LoadEvalData(file_IDs=file_test[0:int(len(file_test)/2)], labels=targets_test, audio_path=path_test, win_len=args.win_len)
test_set2 = utils.LoadEvalData(file_IDs=file_test[int(len(file_test)/2):], labels=targets_test, audio_path=path_test, win_len=args.win_len)
test_dataloader1 = DataLoader(test_set1, batch_size=1, shuffle=True, drop_last=True, num_workers=2)
test_dataloader2 = DataLoader(test_set2, batch_size=1, shuffle=True, drop_last=True, num_workers=2)
# Initialize model
# RawNet config with yaml file
# dir_yaml = os.path.splitext('model_config_RawNet')[0] + '.yaml'
# with open(dir_yaml, 'r') as f_yaml:
# parser1 = yaml.load(f_yaml, Loader=yaml.FullLoader)
# Initialize model
model = rawnet.RawNet(args, platform)
# Move the model on gpu
model = model.to(platform)
# Load model weights
model.load_state_dict(torch.load(model_path))
# define the optimization parameters
loss_fn = nn.CrossEntropyLoss()
df = pd.DataFrame(columns=param.test_dataframe)
#df = pd.read_csv(results_path)
accuracy1, test_loss1, df = test_loop(test_dataloader1, model, loss_fn, platform, df, original_test, emb_dir=emb_path)
df.to_csv(results_path, index= False)
accuracy2, test_loss2, df = test_loop(test_dataloader2, model, loss_fn, platform, df, original_test, emb_dir=emb_path)
df.to_csv(results_path, index= False)
df = addCosineDistance(df, emb_dir=emb_path)
df.to_csv(results_path, index=False)
df = addEuclideanDistance(df, emb_dir=emb_path)
df.to_csv(results_path, index= False)
df = addManhattanDistance(df, emb_dir=emb_path)
df.to_csv(results_path, index=False)
#df = addDotProduct(df, emb_dir=emb_path)
#df.to_csv(results_path, index=False)
#df = addSquaredEuclideanDistance(df,emb_dir=emb_path)
#df.to_csv(results_path, index=False)
print("Done")
df_filtered = df[df['original']=='-']
plt.figure(figsize=(8, 8))
utils.plot_roc_curve(df_filtered['label'], df_filtered['prediction'], legend='Original score')
utils.plot_roc_curve(df_filtered['label'], -df_filtered['cosine distance'], legend='Cosine distance')
utils.plot_roc_curve(df_filtered['label'], -df_filtered['euclidean distance'], legend='Euclidean distance')
utils.plot_roc_curve(df_filtered['label'], -df_filtered['manhattan distance'], legend='Manhattan distance')
plt.title(f"ROC curve for new dataset")
plt.savefig('roc4.pdf')
plt.show()
if __name__ == '__main__':
args = parse_args()
main(args)