-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathargparser.py
29 lines (25 loc) · 2.09 KB
/
argparser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import argparse
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--name", type=str,
help="name of the model")
parser.add_argument("--seed", help="seed for RNG", type=int, default=0)
# parameters
parser.add_argument("--nb_samp", type=int, default=16000, help="Number of input samples")
parser.add_argument("--first_conv", type=int, default=1024, help="Number of filter coefficients")
parser.add_argument("--in_channels", type=int, default=1, help="Input channels")
parser.add_argument("--filts", type=int, default=[20, [20, 20], [20, 128], [128, 128]], help="Number of filters channel in residual blocks")
parser.add_argument("--blocks", type=int, default=[2, 4], help="")
parser.add_argument("--nb_fc_node", type=int, default=1024, help="Fully connected nodes")
parser.add_argument("--gru_node", type=int, default=1024, help="GRU nodes")
parser.add_argument("--nb_gru_layer", type=int, default=3, help="GRU layers")
parser.add_argument("--nb_classes", type=int, default=2, help="Output classes")
parser.add_argument("--win_len", type=int, required=False, default=2, help="Window length")
parser.add_argument("--runpath", type=str, required=False, default="/nas/home/aorsatti/Pycharm/Tesi/data/trained_models", help="Results directory to be loaded")
parser.add_argument("--gpu", type=int, required=False, default=-1, help="Index of GPU to use (None for CPU, -1 for least used GPU)")
parser.add_argument("--outpath", type=str, required=False, default="/nas/home/aorsatti/Pycharm/Tesi/data/trained_models", help="Results directory")
parser.add_argument("--batch_size", type=int, required=False, default=64, choices=[1, 16, 32, 64, 128, 256, 512], help="Batch size")
parser.add_argument("--epochs", type=int, required=False, default=50, help="Max iterations number")
parser.add_argument("--label_smoothing", type=float, required=False, default=0.0, help="Cross Entropy Loss label smoothing")
parser.add_argument("--lr", type=float, required=False, default=0.0001, help="")
return parser.parse_args()