forked from zylon-ai/private-gpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathingest.py
36 lines (33 loc) · 1.48 KB
/
ingest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import os
from dotenv import load_dotenv
from langchain.document_loaders import TextLoader, PDFMinerLoader, CSVLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings import LlamaCppEmbeddings
from constants import PERSIST_DIRECTORY
from constants import CHROMA_SETTINGS
load_dotenv()
def main():
llama_embeddings_model = os.environ.get('LLAMA_EMBEDDINGS_MODEL')
persist_directory = os.environ.get('PERSIST_DIRECTORY')
model_n_ctx = os.environ.get('MODEL_N_CTX')
# Load document and split in chunks
for root, dirs, files in os.walk("source_documents"):
for file in files:
if file.endswith(".txt"):
loader = TextLoader(os.path.join(root, file), encoding="utf8")
elif file.endswith(".pdf"):
loader = PDFMinerLoader(os.path.join(root, file))
elif file.endswith(".csv"):
loader = CSVLoader(os.path.join(root, file))
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
texts = text_splitter.split_documents(documents)
# Create embeddings
llama = LlamaCppEmbeddings(model_path=llama_embeddings_model, n_ctx=model_n_ctx)
# Create and store locally vectorstore
db = Chroma.from_documents(texts, llama, persist_directory=PERSIST_DIRECTORY, client_settings=CHROMA_SETTINGS)
db.persist()
db = None
if __name__ == "__main__":
main()