From d4080f31cc904061f4575c9c22ff2506be788a0f Mon Sep 17 00:00:00 2001 From: Normann Date: Fri, 4 Oct 2024 19:03:41 +0200 Subject: [PATCH] test for class_optimize in PR #88 Test meant for class_optimize. Will only work with PR #88 since the old class has no way to use a fixed random seed. --- tests/test_class_optimize.py | 1410 ++++++++++++++++++++++++++++++++++ 1 file changed, 1410 insertions(+) create mode 100644 tests/test_class_optimize.py diff --git a/tests/test_class_optimize.py b/tests/test_class_optimize.py new file mode 100644 index 00000000..f999a3f0 --- /dev/null +++ b/tests/test_class_optimize.py @@ -0,0 +1,1410 @@ +import numpy as np +import pytest + +from modules.class_optimize import optimization_problem + +# Sample known result (replace with the actual expected output) +EXPECTED_RESULT = { + "discharge_hours_bin": [ + 1, + 1, + 1, + 0, + 1, + 1, + 0, + 1, + 1, + 1, + 0, + 1, + 1, + 1, + 1, + 1, + 0, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + ], + "eautocharge_hours_float": [ + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.0, + 0.0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.0, + 0.0, + ], + "result": { + "Last_Wh_pro_Stunde": [ + None, + 1063.91, + 1320.56, + 1132.03, + 1163.67, + 1176.82, + 1216.22, + 1103.78, + 1129.12, + 1178.71, + 1050.98, + 988.56, + 912.38, + 704.61, + 516.37, + 868.05, + 694.34, + 608.79, + 556.31, + 488.89, + 506.91, + 804.89, + 1141.98, + 1056.97, + 992.46, + 1155.99, + 827.01, + 1257.98, + 1232.67, + 871.26, + 860.88, + 1158.03, + 1222.72, + 1221.04, + 949.99, + 987.01, + 733.99, + 592.97, + ], + "Netzeinspeisung_Wh_pro_Stunde": [ + None, + 0.0, + 0.0, + 0.0, + 0.0, + 2924.2707438016537, + 2753.66, + 1914.18, + 813.95, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 1311.3858057851144, + 497.68000000000006, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + ], + "Netzbezug_Wh_pro_Stunde": [ + None, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + ], + "Kosten_Euro_pro_Stunde": [ + None, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + ], + "akku_soc_pro_stunde": [ + None, + 79.91107093663912, + 78.99070247933885, + 79.08956914600552, + 95.27340247933884, + 100.0, + 100.0, + 100.0, + 100.0, + 99.26162190082644, + 96.11376549586775, + 91.89251893939392, + 87.96526342975206, + 84.93233471074379, + 82.70966769972449, + 78.97322658402202, + 75.98450413223138, + 73.36402376033054, + 70.96943870523413, + 68.86505681818178, + 66.68310950413219, + 63.24022899449031, + 59.76919765840215, + 58.25555268595038, + 58.684419352617034, + 60.18041935261703, + 64.6149860192837, + 65.19921935261704, + 80.15195268595036, + 92.42761935261704, + 99.64985268595038, + 100.0, + 100.0, + 98.89101239669421, + 96.45174758953168, + 92.20325413223141, + 89.04386191460057, + 86.4914772727273, + ], + "Einnahmen_Euro_pro_Stunde": [ + None, + 0.0, + 0.0, + 0.0, + 0.0, + 0.20469895206611574, + 0.19275619999999996, + 0.1339926, + 0.0569765, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.091797006404958, + 0.0348376, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + ], + "Gesamtbilanz_Euro": np.float64(-0.7150588584710738), + "E-Auto_SoC_pro_Stunde": [ + None, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + ], + "Gesamteinnahmen_Euro": np.float64(0.7150588584710738), + "Gesamtkosten_Euro": np.float64(0.0), + "Verluste_Pro_Stunde": [ + None, + 2.817272727272737, + 29.157272727272726, + 3.5592000000000112, + 582.6179999999995, + 170.1575107438016, + 0.0, + 0.0, + 0.0, + 23.391818181818195, + 99.72409090909093, + 133.72909090909081, + 124.41545454545451, + 96.08318181818186, + 70.41409090909087, + 118.37045454545455, + 94.68272727272722, + 83.01681818181817, + 75.86045454545456, + 66.66681818181814, + 69.12409090909085, + 109.0704545454546, + 109.96227272727276, + 47.952272727272714, + 15.439199999999985, + 53.855999999999995, + 159.6443999999999, + 21.032399999999996, + 538.2984000000001, + 441.924, + 260.0003999999999, + 12.605303305786279, + 0.0, + 35.132727272727266, + 77.27590909090907, + 134.59227272727276, + 100.08954545454549, + 80.85954545454547, + ], + "Gesamt_Verluste": np.float64(4041.523450413223), + "Haushaltsgeraet_wh_pro_stunde": [ + None, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + ], + }, + "eauto_obj": { + "kapazitaet_wh": 60000, + "start_soc_prozent": 54, + "soc_wh": 32400.000000000004, + "hours": 48, + "discharge_array": [ + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + ], + "charge_array": [ + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + ], + "lade_effizienz": 0.95, + "entlade_effizienz": 1.0, + "max_ladeleistung_w": 11040, + }, + "start_solution": [ + 1, + 1, + 1, + 0, + 1, + 1, + 0, + 1, + 1, + 1, + 0, + 1, + 1, + 1, + 1, + 1, + 0, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.0, + 0.0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.0, + 0.0, + ], + "spuelstart": None, + "simulation_data": { + "Last_Wh_pro_Stunde": [ + None, + 1063.91, + 1320.56, + 1132.03, + 1163.67, + 1176.82, + 1216.22, + 1103.78, + 1129.12, + 1178.71, + 1050.98, + 988.56, + 912.38, + 704.61, + 516.37, + 868.05, + 694.34, + 608.79, + 556.31, + 488.89, + 506.91, + 804.89, + 1141.98, + 1056.97, + 992.46, + 1155.99, + 827.01, + 1257.98, + 1232.67, + 871.26, + 860.88, + 1158.03, + 1222.72, + 1221.04, + 949.99, + 987.01, + 733.99, + 592.97, + ], + "Netzeinspeisung_Wh_pro_Stunde": [ + None, + 0.0, + 0.0, + 0.0, + 0.0, + 2924.2707438016537, + 2753.66, + 1914.18, + 813.95, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 1311.3858057851144, + 497.68000000000006, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + ], + "Netzbezug_Wh_pro_Stunde": [ + None, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + ], + "Kosten_Euro_pro_Stunde": [ + None, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + ], + "akku_soc_pro_stunde": [ + None, + 79.91107093663912, + 78.99070247933885, + 79.08956914600552, + 95.27340247933884, + 100.0, + 100.0, + 100.0, + 100.0, + 99.26162190082644, + 96.11376549586775, + 91.89251893939392, + 87.96526342975206, + 84.93233471074379, + 82.70966769972449, + 78.97322658402202, + 75.98450413223138, + 73.36402376033054, + 70.96943870523413, + 68.86505681818178, + 66.68310950413219, + 63.24022899449031, + 59.76919765840215, + 58.25555268595038, + 58.684419352617034, + 60.18041935261703, + 64.6149860192837, + 65.19921935261704, + 80.15195268595036, + 92.42761935261704, + 99.64985268595038, + 100.0, + 100.0, + 98.89101239669421, + 96.45174758953168, + 92.20325413223141, + 89.04386191460057, + 86.4914772727273, + ], + "Einnahmen_Euro_pro_Stunde": [ + None, + 0.0, + 0.0, + 0.0, + 0.0, + 0.20469895206611574, + 0.19275619999999996, + 0.1339926, + 0.0569765, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.091797006404958, + 0.0348376, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + ], + "Gesamtbilanz_Euro": np.float64(-0.7150588584710738), + "E-Auto_SoC_pro_Stunde": [ + None, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + 54.0, + ], + "Gesamteinnahmen_Euro": np.float64(0.7150588584710738), + "Gesamtkosten_Euro": np.float64(0.0), + "Verluste_Pro_Stunde": [ + None, + 2.817272727272737, + 29.157272727272726, + 3.5592000000000112, + 582.6179999999995, + 170.1575107438016, + 0.0, + 0.0, + 0.0, + 23.391818181818195, + 99.72409090909093, + 133.72909090909081, + 124.41545454545451, + 96.08318181818186, + 70.41409090909087, + 118.37045454545455, + 94.68272727272722, + 83.01681818181817, + 75.86045454545456, + 66.66681818181814, + 69.12409090909085, + 109.0704545454546, + 109.96227272727276, + 47.952272727272714, + 15.439199999999985, + 53.855999999999995, + 159.6443999999999, + 21.032399999999996, + 538.2984000000001, + 441.924, + 260.0003999999999, + 12.605303305786279, + 0.0, + 35.132727272727266, + 77.27590909090907, + 134.59227272727276, + 100.08954545454549, + 80.85954545454547, + ], + "Gesamt_Verluste": np.float64(4041.523450413223), + "Haushaltsgeraet_wh_pro_stunde": [ + None, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + ], + }, +} + + +@pytest.fixture +def setup_opt_class(): + # Initialize the optimization_problem class with parameters + start_hour = 10 + + # PV Forecast (in W) + pv_forecast = [ + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 8.05, + 352.91, + 728.51, + 930.28, + 1043.25, + 1106.74, + 1161.69, + 6018.82, + 5519.07, + 3969.88, + 3017.96, + 1943.07, + 1007.17, + 319.67, + 7.88, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 5.04, + 335.59, + 705.32, + 1121.12, + 1604.79, + 2157.38, + 1433.25, + 5718.49, + 4553.96, + 3027.55, + 2574.46, + 1720.4, + 963.4, + 383.3, + 0, + 0, + 0, + ] + + # Temperature Forecast (in degree C) + temperature_forecast = [ + 18.3, + 17.8, + 16.9, + 16.2, + 15.6, + 15.1, + 14.6, + 14.2, + 14.3, + 14.8, + 15.7, + 16.7, + 17.4, + 18.0, + 18.6, + 19.2, + 19.1, + 18.7, + 18.5, + 17.7, + 16.2, + 14.6, + 13.6, + 13.0, + 12.6, + 12.2, + 11.7, + 11.6, + 11.3, + 11.0, + 10.7, + 10.2, + 11.4, + 14.4, + 16.4, + 18.3, + 19.5, + 20.7, + 21.9, + 22.7, + 23.1, + 23.1, + 22.8, + 21.8, + 20.2, + 19.1, + 18.0, + 17.4, + ] + + # Electricity Price (in Euro per Wh) + strompreis_euro_pro_wh = [ + 0.0003384, + 0.0003318, + 0.0003284, + 0.0003283, + 0.0003289, + 0.0003334, + 0.0003290, + 0.0003302, + 0.0003042, + 0.0002430, + 0.0002280, + 0.0002212, + 0.0002093, + 0.0001879, + 0.0001838, + 0.0002004, + 0.0002198, + 0.0002270, + 0.0002997, + 0.0003195, + 0.0003081, + 0.0002969, + 0.0002921, + 0.0002780, + 0.0003384, + 0.0003318, + 0.0003284, + 0.0003283, + 0.0003289, + 0.0003334, + 0.0003290, + 0.0003302, + 0.0003042, + 0.0002430, + 0.0002280, + 0.0002212, + 0.0002093, + 0.0001879, + 0.0001838, + 0.0002004, + 0.0002198, + 0.0002270, + 0.0002997, + 0.0003195, + 0.0003081, + 0.0002969, + 0.0002921, + 0.0002780, + ] + + # Overall System Load (in W) + gesamtlast = [ + 676.71, + 876.19, + 527.13, + 468.88, + 531.38, + 517.95, + 483.15, + 472.28, + 1011.68, + 995.00, + 1053.07, + 1063.91, + 1320.56, + 1132.03, + 1163.67, + 1176.82, + 1216.22, + 1103.78, + 1129.12, + 1178.71, + 1050.98, + 988.56, + 912.38, + 704.61, + 516.37, + 868.05, + 694.34, + 608.79, + 556.31, + 488.89, + 506.91, + 804.89, + 1141.98, + 1056.97, + 992.46, + 1155.99, + 827.01, + 1257.98, + 1232.67, + 871.26, + 860.88, + 1158.03, + 1222.72, + 1221.04, + 949.99, + 987.01, + 733.99, + 592.97, + ] + + # Start Solution (binary) + start_solution = [ + 1, + 1, + 1, + 1, + 0, + 1, + 0, + 0, + 1, + 1, + 1, + 0, + 1, + 0, + 1, + 0, + 1, + 0, + 1, + 0, + 1, + 0, + 1, + 0, + 1, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 1, + 0, + 0, + 0, + 1, + 0, + 1, + 0, + 1, + 0, + 1, + 0, + 1, + 0, + 1, + 0, + 1, + 0, + 1, + 0, + 1, + 0, + 1, + 0, + 1, + 0, + 1, + 0, + 1, + 0, + 1, + 0, + 1, + 0, + 1, + 0, + 1, + 0, + 1, + 0, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + ] + + # Define parameters for the optimization problem + parameter = { + "preis_euro_pro_wh_akku": 10e-05, # Cost of storing energy in battery (per Wh) + "pv_soc": 80, # Initial state of charge (SOC) of PV battery (%) + "pv_akku_cap": 26400, # Battery capacity (in Wh) + "year_energy": 4100000, # Yearly energy consumption (in Wh) + "einspeiseverguetung_euro_pro_wh": 7e-05, # Feed-in tariff for exporting electricity (per Wh) + "max_heizleistung": 1000, # Maximum heating power (in W) + "gesamtlast": gesamtlast, # Overall load on the system + "pv_forecast": pv_forecast, # PV generation forecast (48 hours) + "temperature_forecast": temperature_forecast, # Temperature forecast (48 hours) + "strompreis_euro_pro_wh": strompreis_euro_pro_wh, # Electricity price forecast (48 hours) + "eauto_min_soc": 0, # Minimum SOC for electric car + "eauto_cap": 60000, # Electric car battery capacity (Wh) + "eauto_charge_efficiency": 0.95, # Charging efficiency of the electric car + "eauto_charge_power": 11040, # Charging power of the electric car (W) + "eauto_soc": 54, # Current SOC of the electric car (%) + "pvpowernow": 211.137503624, # Current PV power generation (W) + "start_solution": start_solution, # Initial solution for the optimization + "haushaltsgeraet_wh": 937, # Household appliance consumption (Wh) + "haushaltsgeraet_dauer": 0, # Duration of appliance usage (hours) + } + + # Create an instance of the optimization problem class + opt_class = optimization_problem( + prediction_hours=48, strafe=10, optimization_hours=24, fixed_seed=42 + ) + yield ( + opt_class, + parameter, + start_hour, + ) # Yield the class and parameters for use in tests + + +def test_optimierung_ems(setup_opt_class): + opt_class, parameter, start_hour = setup_opt_class + + # Call the optimization function + ergebnis = opt_class.optimierung_ems(parameter=parameter, start_hour=start_hour) + + # Compare the result with the known expected result + assert ( + ergebnis == EXPECTED_RESULT + ) # Use appropriate comparison based on the structure of ergebnis