-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
37 lines (28 loc) · 966 Bytes
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from keras.models import load_model
from flask import Flask, request, render_template
app = Flask(__name__)
# load model
model = load_model('models/model.h5')
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
tokenizer = Tokenizer(num_words=300)
def pred_sent(text):
tokenizer.fit_on_texts([text])
tw = tokenizer.texts_to_sequences([text])
tw = pad_sequences(tw,maxlen=200)
prediction = int(model.predict(tw).round().item())
if prediction == 0:
return "Postive"
else:
return "Negative"
@app.route('/')
def home():
return render_template('index.html')
@app.route('/predict', methods=['POST', 'GET'])
def predict():
text = request.form['Tweet']
text = str(text)
output = pred_sent(text)
return render_template('index.html', prediction_text='Sentiment is {}'.format(output))
if __name__ == '__main__':
app.run(debug=False)