-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path4. Median of Two Sorted Arrays
39 lines (32 loc) · 1.06 KB
/
4. Median of Two Sorted Arrays
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
/**
Given two sorted arrays nums1 and nums2 of size m and n respectively, return the median of the two sorted arrays.
Follow up: The overall run time complexity should be O(log (m+n)).
Example 1:
Input: nums1 = [1,3], nums2 = [2]
Output: 2.00000
Explanation: merged array = [1,2,3] and median is 2.
Example 2:
Input: nums1 = [1,2], nums2 = [3,4]
Output: 2.50000
Explanation: merged array = [1,2,3,4] and median is (2 + 3) / 2 = 2.5.
*/
class Solution {
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
int i=0,j=0;
vector<int> nums3;
while(i<nums1.size() && j<nums2.size()){
if(nums1[i]<nums2[j])
nums3.push_back(nums1[i++]);
else
nums3.push_back(nums2[j++]);
}
while(i<nums1.size())
nums3.push_back(nums1[i++]);
while(j<nums2.size())
nums3.push_back(nums2[j++]);
if(nums3.size()%2)
return nums3[nums3.size()/2];
return (nums3[nums3.size()/2] + nums3[nums3.size()/2 -1])/2.0;
}
};