forked from reda-marzouk608/scrape-master
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstreamlit_app.py
387 lines (341 loc) · 16.7 KB
/
streamlit_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
# streamlit_app.py
import streamlit as st
from streamlit_tags import st_tags_sidebar
import pandas as pd
import json
from datetime import datetime
from scraper import (
fetch_html_selenium,
save_raw_data,
format_data,
save_formatted_data,
calculate_price,
html_to_markdown_with_readability,
create_dynamic_listing_model,
create_listings_container_model,
scrape_url,
setup_selenium,
generate_unique_folder_name
)
from pagination_detector import detect_pagination_elements
import re
from urllib.parse import urlparse
from assets import PRICING
import os
# Initialize Streamlit app
st.set_page_config(page_title="Universal Web Scraper", page_icon="🦑")
st.title("Universal Web Scraper 🦑")
# Initialize session state variables
if 'scraping_state' not in st.session_state:
st.session_state['scraping_state'] = 'idle' # Possible states: 'idle', 'waiting', 'scraping', 'completed'
if 'results' not in st.session_state:
st.session_state['results'] = None
if 'driver' not in st.session_state:
st.session_state['driver'] = None
# Sidebar components
st.sidebar.title("Web Scraper Settings")
# API Keys
with st.sidebar.expander("API Keys", expanded=False):
st.session_state['openai_api_key'] = st.text_input("OpenAI API Key", type="password")
st.session_state['gemini_api_key'] = st.text_input("Gemini API Key", type="password")
st.session_state['groq_api_key'] = st.text_input("Groq API Key", type="password")
# Model selection
model_selection = st.sidebar.selectbox("Select Model", options=list(PRICING.keys()), index=0)
# URL input
url_input = st.sidebar.text_input("Enter URL(s) separated by whitespace")
# Process URLs
urls = url_input.strip().split()
num_urls = len(urls)
# Fields to extract
show_tags = st.sidebar.toggle("Enable Scraping")
fields = []
if show_tags:
fields = st_tags_sidebar(
label='Enter Fields to Extract:',
text='Press enter to add a field',
value=[],
suggestions=[],
maxtags=-1,
key='fields_input'
)
st.sidebar.markdown("---")
# Conditionally display Pagination and Attended Mode options
if num_urls <= 1:
# Pagination settings
use_pagination = st.sidebar.toggle("Enable Pagination")
pagination_details = ""
if use_pagination:
pagination_details = st.sidebar.text_input(
"Enter Pagination Details (optional)",
help="Describe how to navigate through pages (e.g., 'Next' button class, URL pattern)"
)
st.sidebar.markdown("---")
# Attended mode toggle
attended_mode = st.sidebar.toggle("Enable Attended Mode")
else:
# Multiple URLs entered; disable Pagination and Attended Mode
use_pagination = False
attended_mode = False
# Inform the user
st.sidebar.info("Pagination and Attended Mode are disabled when multiple URLs are entered.")
st.sidebar.markdown("---")
# Main action button
if st.sidebar.button("LAUNCH SCRAPER", type="primary"):
if url_input.strip() == "":
st.error("Please enter at least one URL.")
elif show_tags and len(fields) == 0:
st.error("Please enter at least one field to extract.")
else:
# Set up scraping parameters in session state
st.session_state['urls'] = url_input.strip().split()
st.session_state['fields'] = fields
st.session_state['model_selection'] = model_selection
st.session_state['attended_mode'] = attended_mode
st.session_state['use_pagination'] = use_pagination
st.session_state['pagination_details'] = pagination_details
st.session_state['scraping_state'] = 'waiting' if attended_mode else 'scraping'
# Scraping logic
if st.session_state['scraping_state'] == 'waiting':
# Attended mode: set up driver and wait for user interaction
if st.session_state['driver'] is None:
st.session_state['driver'] = setup_selenium(attended_mode=True)
st.session_state['driver'].get(st.session_state['urls'][0])
st.write("Perform any required actions in the browser window that opened.")
st.write("Navigate to the page you want to scrape.")
st.write("When ready, click the 'Resume Scraping' button.")
else:
st.write("Browser window is already open. Perform your actions and click 'Resume Scraping'.")
if st.button("Resume Scraping"):
st.session_state['scraping_state'] = 'scraping'
st.rerun()
elif st.session_state['scraping_state'] == 'scraping':
with st.spinner('Scraping in progress...'):
# Perform scraping
output_folder = os.path.join('output', generate_unique_folder_name(st.session_state['urls'][0]))
os.makedirs(output_folder, exist_ok=True)
total_input_tokens = 0
total_output_tokens = 0
total_cost = 0
all_data = []
pagination_info = None
driver = st.session_state.get('driver', None)
if st.session_state['attended_mode'] and driver is not None:
# Attended mode: scrape the current page without navigating
# Fetch HTML from the current page
raw_html = fetch_html_selenium(st.session_state['urls'][0], attended_mode=True, driver=driver)
markdown = html_to_markdown_with_readability(raw_html)
save_raw_data(markdown, output_folder, f'rawData_1.md')
current_url = driver.current_url # Use the current URL for logging and saving purposes
# Detect pagination if enabled
if st.session_state['use_pagination']:
pagination_data, token_counts, pagination_price = detect_pagination_elements(
current_url, st.session_state['pagination_details'], st.session_state['model_selection'], markdown
)
# Check if pagination_data is a dict or a model with 'page_urls' attribute
if isinstance(pagination_data, dict):
page_urls = pagination_data.get("page_urls", [])
else:
page_urls = pagination_data.page_urls
pagination_info = {
"page_urls": page_urls,
"token_counts": token_counts,
"price": pagination_price
}
# Scrape data if fields are specified
if show_tags:
# Create dynamic models
DynamicListingModel = create_dynamic_listing_model(st.session_state['fields'])
DynamicListingsContainer = create_listings_container_model(DynamicListingModel)
# Format data
formatted_data, token_counts = format_data(
markdown, DynamicListingsContainer, DynamicListingModel, st.session_state['model_selection']
)
input_tokens, output_tokens, cost = calculate_price(token_counts, st.session_state['model_selection'])
total_input_tokens += input_tokens
total_output_tokens += output_tokens
total_cost += cost
# Save formatted data
df = save_formatted_data(formatted_data, output_folder, f'sorted_data_1.json', f'sorted_data_1.xlsx')
all_data.append(formatted_data)
else:
# Non-attended mode or driver not available
for i, url in enumerate(st.session_state['urls'], start=1):
# Fetch HTML
raw_html = fetch_html_selenium(url, attended_mode=False)
markdown = html_to_markdown_with_readability(raw_html)
save_raw_data(markdown, output_folder, f'rawData_{i}.md')
# Detect pagination if enabled and only for the first URL
if st.session_state['use_pagination'] and i == 1:
pagination_data, token_counts, pagination_price = detect_pagination_elements(
url, st.session_state['pagination_details'], st.session_state['model_selection'], markdown
)
# Check if pagination_data is a dict or a model with 'page_urls' attribute
if isinstance(pagination_data, dict):
page_urls = pagination_data.get("page_urls", [])
else:
page_urls = pagination_data.page_urls
pagination_info = {
"page_urls": page_urls,
"token_counts": token_counts,
"price": pagination_price
}
# Scrape data if fields are specified
if show_tags:
# Create dynamic models
DynamicListingModel = create_dynamic_listing_model(st.session_state['fields'])
DynamicListingsContainer = create_listings_container_model(DynamicListingModel)
# Format data
formatted_data, token_counts = format_data(
markdown, DynamicListingsContainer, DynamicListingModel, st.session_state['model_selection']
)
input_tokens, output_tokens, cost = calculate_price(token_counts, st.session_state['model_selection'])
total_input_tokens += input_tokens
total_output_tokens += output_tokens
total_cost += cost
# Save formatted data
df = save_formatted_data(formatted_data, output_folder, f'sorted_data_{i}.json', f'sorted_data_{i}.xlsx')
all_data.append(formatted_data)
# Clean up driver if used
if driver:
driver.quit()
st.session_state['driver'] = None
# Save results
st.session_state['results'] = {
'data': all_data,
'input_tokens': total_input_tokens,
'output_tokens': total_output_tokens,
'total_cost': total_cost,
'output_folder': output_folder,
'pagination_info': pagination_info
}
st.session_state['scraping_state'] = 'completed'
# Display results
if st.session_state['scraping_state'] == 'completed' and st.session_state['results']:
results = st.session_state['results']
all_data = results['data']
total_input_tokens = results['input_tokens']
total_output_tokens = results['output_tokens']
total_cost = results['total_cost']
output_folder = results['output_folder']
pagination_info = results['pagination_info']
# Display scraping details
if show_tags:
st.subheader("Scraping Results")
for i, data in enumerate(all_data, start=1):
st.write(f"Data from URL {i}:")
# Handle string data (convert to dict if it's JSON)
if isinstance(data, str):
try:
data = json.loads(data)
except json.JSONDecodeError:
st.error(f"Failed to parse data as JSON for URL {i}")
continue
if isinstance(data, dict):
if 'listings' in data and isinstance(data['listings'], list):
df = pd.DataFrame(data['listings'])
else:
# If 'listings' is not in the dict or not a list, use the entire dict
df = pd.DataFrame([data])
elif hasattr(data, 'listings') and isinstance(data.listings, list):
# Handle the case where data is a Pydantic model
listings = [item.dict() for item in data.listings]
df = pd.DataFrame(listings)
else:
st.error(f"Unexpected data format for URL {i}")
continue
# Display the dataframe
st.dataframe(df, use_container_width=True)
# Display token usage and cost
st.sidebar.markdown("---")
st.sidebar.markdown("### Scraping Details")
st.sidebar.markdown("#### Token Usage")
st.sidebar.markdown(f"*Input Tokens:* {total_input_tokens}")
st.sidebar.markdown(f"*Output Tokens:* {total_output_tokens}")
st.sidebar.markdown(f"**Total Cost:** :green-background[**${total_cost:.4f}**]")
# Download options
st.subheader("Download Extracted Data")
col1, col2 = st.columns(2)
with col1:
json_data = json.dumps(all_data, default=lambda o: o.dict() if hasattr(o, 'dict') else str(o), indent=4)
st.download_button(
"Download JSON",
data=json_data,
file_name="scraped_data.json"
)
with col2:
# Convert all data to a single DataFrame
all_listings = []
for data in all_data:
if isinstance(data, str):
try:
data = json.loads(data)
except json.JSONDecodeError:
continue
if isinstance(data, dict) and 'listings' in data:
all_listings.extend(data['listings'])
elif hasattr(data, 'listings'):
all_listings.extend([item.dict() for item in data.listings])
else:
all_listings.append(data)
combined_df = pd.DataFrame(all_listings)
st.download_button(
"Download CSV",
data=combined_df.to_csv(index=False),
file_name="scraped_data.csv"
)
st.success(f"Scraping completed. Results saved in {output_folder}")
# Display pagination info
if pagination_info:
st.markdown("---")
st.subheader("Pagination Information")
# Display token usage and cost using metrics
st.sidebar.markdown("---")
st.sidebar.markdown("### Pagination Details")
st.sidebar.markdown(f"**Number of Page URLs:** {len(pagination_info['page_urls'])}")
st.sidebar.markdown("#### Pagination Token Usage")
st.sidebar.markdown(f"*Input Tokens:* {pagination_info['token_counts']['input_tokens']}")
st.sidebar.markdown(f"*Output Tokens:* {pagination_info['token_counts']['output_tokens']}")
st.sidebar.markdown(f"**Pagination Cost:** :blue-background[**${pagination_info['price']:.4f}**]")
# Display page URLs in a table
st.write("**Page URLs:**")
# Make URLs clickable
pagination_df = pd.DataFrame(pagination_info["page_urls"], columns=["Page URLs"])
st.dataframe(
pagination_df,
column_config={
"Page URLs": st.column_config.LinkColumn("Page URLs")
},use_container_width=True
)
# Download pagination URLs
st.subheader("Download Pagination URLs")
col1, col2 = st.columns(2)
with col1:
st.download_button("Download Pagination CSV",data=pagination_df.to_csv(index=False),file_name="pagination_urls.csv")
with col2:
st.download_button("Download Pagination JSON",data=json.dumps(pagination_info['page_urls'], indent=4),file_name="pagination_urls.json")
# Reset scraping state
if st.sidebar.button("Clear Results"):
st.session_state['scraping_state'] = 'idle'
st.session_state['results'] = None
# If both scraping and pagination were performed, show totals under the pagination table
if show_tags and pagination_info:
st.markdown("---")
total_input_tokens_combined = total_input_tokens + pagination_info['token_counts']['input_tokens']
total_output_tokens_combined = total_output_tokens + pagination_info['token_counts']['output_tokens']
total_combined_cost = total_cost + pagination_info['price']
st.markdown("### Total Counts and Cost (Including Pagination)")
st.markdown(f"**Total Input Tokens:** {total_input_tokens_combined}")
st.markdown(f"**Total Output Tokens:** {total_output_tokens_combined}")
st.markdown(f"**Total Combined Cost:** :rainbow-background[**${total_combined_cost:.4f}**]")
# Helper function to generate unique folder names
def generate_unique_folder_name(url):
timestamp = datetime.now().strftime('%Y_%m_%d__%H_%M_%S')
# Parse the URL
parsed_url = urlparse(url)
# Extract the domain name
domain = parsed_url.netloc or parsed_url.path.split('/')[0]
# Remove 'www.' if present
domain = re.sub(r'^www\.', '', domain)
# Remove any non-alphanumeric characters and replace with underscores
clean_domain = re.sub(r'\W+', '_', domain)
return f"{clean_domain}_{timestamp}"