-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.ts
218 lines (203 loc) · 7.19 KB
/
index.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as tfconv from '@tensorflow/tfjs-converter';
import * as tf from '@tensorflow/tfjs-core';
import {DeepLabInput, DeepLabOutput, ModelArchitecture, ModelConfig, PredictionConfig} from './types';
import {getColormap, getLabels, getURL, toInputTensor, toSegmentationImage} from './utils';
export {version} from './version';
export {
getColormap,
getLabels,
getURL,
ModelConfig,
PredictionConfig,
toSegmentationImage
};
/**
* Initializes the DeepLab model and returns a `SemanticSegmentation` object.
*
* @param input ::
* `ImageData|HTMLImageElement|HTMLCanvasElement|HTMLVideoElement`
*
* The input image to feed through the network.
*
* @param config :: `ModelConfig`
*
* The configuration for the model with any of the following attributes:
*
* * quantizationBytes (optional) :: `QuantizationBytes`
*
* The degree to which weights are quantized (either 1, 2 or 4).
* Setting this attribute to 1 or 2 will load the model with int32 and
* float32 compressed to 1 or 2 bytes respectively.
* Set it to 4 to disable quantization.
*
* * base (optional) :: `ModelArchitecture`
*
* The type of model to load (either `pascal`, `cityscapes` or `ade20k`).
*
* * modelUrl (optional) :: `string`
*
* The URL from which to load the TF.js GraphModel JSON.
* Inferred from `base` and `quantizationBytes` if undefined.
*
* @return The initialized `SemanticSegmentation` object
*/
export async function load(
modelConfig: ModelConfig = {
base: 'pascal',
quantizationBytes: 2
},
) {
if (tf == null) {
throw new Error(
`Cannot find TensorFlow.js.` +
` If you are using a <script> tag, please ` +
`also include @tensorflow/tfjs on the page before using this model.`);
}
if (modelConfig.base) {
if (['pascal', 'cityscapes', 'ade20k'].indexOf(modelConfig.base) === -1) {
throw new Error(
`SemanticSegmentation cannot be constructed ` +
`with an invalid base model ${modelConfig.base}. ` +
`Try one of 'pascal', 'cityscapes' and 'ade20k'.`);
}
if ([1, 2, 4].indexOf(modelConfig.quantizationBytes) === -1) {
throw new Error(`Only quantization to 1, 2 or 4 bytes is supported.`);
}
} else if (!modelConfig.modelUrl) {
throw new Error(
`SemanticSegmentation can be constructed either by passing ` +
`the weights URL or one of the supported base model names from ` +
`'pascal', 'cityscapes' and 'ade20k',` +
`together with the degree of quantization (either 1, 2 or 4).` +
`Aborting, since neither has been provided.`);
}
const graphModel = await tfconv.loadGraphModel(
modelConfig.modelUrl ||
getURL(modelConfig.base, modelConfig.quantizationBytes));
const deeplab = new SemanticSegmentation(graphModel, modelConfig.base);
return deeplab;
}
export class SemanticSegmentation {
readonly model: tfconv.GraphModel;
readonly base: ModelArchitecture;
constructor(
graphModel: tfconv.GraphModel,
base?: ModelArchitecture,
) {
this.model = graphModel;
this.base = base;
}
/**
* Segments an arbitrary image and generates a two-dimensional tensor with
* class labels assigned to each cell of the grid overlaid on the image ( the
* maximum number of cells on the side is fixed to 513).
*
* @param input ::
* `ImageData|HTMLImageElement|HTMLCanvasElement|HTMLVideoElement`
*
* The input image to segment.
*
* @return rawSegmentationMap :: `tf.Tensor2D`
*
* The segmentation map of the image
*/
public predict(input: DeepLabInput): tf.Tensor2D {
return tf.tidy(() => {
const data = tf.cast(toInputTensor(input), 'int32');
return tf.squeeze(this.model.execute(data) as tf.Tensor);
});
}
/**
* Segments an arbitrary image and generates a two-dimensional tensor with
* class labels assigned to each cell of the grid overlaid on the image ( the
* maximum number of cells on the side is fixed to 513).
*
* @param image :: `ImageData | HTMLImageElement | HTMLCanvasElement |
* HTMLVideoElement | tf.Tensor3D`;
*
* The image to segment
*
* @param config (optional) The configuration object for the segmentation:
*
* - **config.canvas** (optional) :: `HTMLCanvasElement`
*
* The canvas where to draw the output
*
* - **config.colormap** (optional) :: `[number, number, number][]`
*
* The array of RGB colors corresponding to labels
*
* - **config.labels** (optional) :: `string[]`
*
* The array of names corresponding to labels
*
* By [default](./src/index.ts#L81), `colormap` and `labels` are set
* according to the `base` model attribute passed during initialization.
*
* @returns A promise of a `DeepLabOutput` object, with four attributes:
*
* - **legend** :: `{ [name: string]: [number, number, number] }`
*
* The legend is a dictionary of objects recognized in the image and their
* colors in RGB format.
*
* - **height** :: `number`
*
* The height of the returned segmentation map
*
* - **width** :: `number`
*
* The width of the returned segmentation map
*
* - **segmentationMap** :: `Uint8ClampedArray`
*
* The colored segmentation map as `Uint8ClampedArray` which can be
* fed into `ImageData` and mapped to a canvas.
*/
public async segment(input: DeepLabInput, config: PredictionConfig = {}):
Promise<DeepLabOutput> {
if (!((config.colormap && config.labels) || this.base)) {
throw new Error(
`Calling the 'segment' method requires either the 'base'` +
` attribute to be defined ` +
`(e.g. 'pascal', 'cityscapes' or'ade20k'),` +
` or 'colormap' and 'labels' options to be set. ` +
`Aborting, since neither has been provided.`);
} else if (!(config.colormap && config.labels)) {
config.colormap = getColormap(this.base);
config.labels = getLabels(this.base);
}
const {colormap, labels, canvas} = config;
const rawSegmentationMap = tf.tidy(() => this.predict(input));
const [height, width] = rawSegmentationMap.shape;
const {legend, segmentationMap} =
await toSegmentationImage(colormap, labels, rawSegmentationMap, canvas);
tf.dispose(rawSegmentationMap);
return {legend, height, width, segmentationMap};
}
/**
* Dispose of the tensors allocated by the model.
* You should call this when you are done with the model.
*/
public async dispose() {
if (this.model) {
this.model.dispose();
}
}
}