-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathRedBlackBST.h
573 lines (502 loc) · 20 KB
/
RedBlackBST.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
#ifndef CH3_REDBLACKBST_H
#define CH3_REDBLACKBST_H
#include <stdexcept>
#include <vector>
using std::runtime_error;
using std::vector;
/**
* The {@code BST} class represents an ordered symbol table of generic
* key-value pairs.
* It supports the usual <em>put</em>, <em>get</em>, <em>contains</em>,
* <em>delete</em>, <em>size</em>, and <em>is-empty</em> methods.
* It also provides ordered methods for finding the <em>minimum</em>,
* <em>maximum</em>, <em>floor</em>, and <em>ceiling</em>.
* It also provides a <em>keys</em> method for iterating over all of the keys.
* A symbol table implements the <em>associative array</em> abstraction:
* when associating a value with a key that is already in the symbol table,
* the convention is to replace the old value with the new value.
* Unlike {@link java.util.Map}, this class uses the convention that
* values cannot be {@code null}—setting the
* value associated with a key to {@code null} is equivalent to deleting the key
* from the symbol table.
* <p>
* This implementation uses a left-leaning red-black BST. It requires that
* the key type implements the {@code Comparable} interface and calls the
* {@code compareTo()} and method to compare two keys. It does not call either
* {@code equals()} or {@code hashCode()}.
* The <em>put</em>, <em>contains</em>, <em>remove</em>, <em>minimum</em>,
* <em>maximum</em>, <em>ceiling</em>, and <em>floor</em> operations each take
* logarithmic time in the worst case, if the tree becomes unbalanced.
* The <em>size</em>, and <em>is-empty</em> operations take constant time.
* Construction takes constant time.
* <p>
* For additional documentation, see <a href="https://algs4.cs.princeton.edu/33balanced">Section 3.3</a> of
* <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
* For other implementations of the same API, see {@link ST}, {@link BinarySearchST},
* {@link SequentialSearchST}, {@link BST},
* {@link SeparateChainingHashST}, {@link LinearProbingHashST}, and {@link AVLTreeST}.
*
* @author Robert Sedgewick
* @author Kevin Wayne
*/
template<typename Key, typename Value>
class RedBlackBST {
public:
/**
* Initializes an empty symbol table.
*/
RedBlackBST() : root(nullptr) {}
/**
* Returns the number of key-value pairs in this symbol table.
* @return the number of key-value pairs in this symbol table
*/
int size() {
return size(root);
}
/**
* Is this symbol table empty?
* @return {@code true} if this symbol table is empty and {@code false} otherwise
*/
bool isEmpty() {
return root == nullptr;
}
/***************************************************************************
* Standard BST search.
***************************************************************************/
/**
* Returns the value associated with the given key.
* @param key the key
* @return the value associated with the given key if the key is in the symbol table
* and {@code null} if the key is not in the symbol table
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
Value get(Key key) {
return get(root, key);
}
/**
* Does this symbol table contain the given key?
* @param key the key
* @return {@code true} if this symbol table contains {@code key} and
* {@code false} otherwise
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
bool contains(Key key) {
return contains(root, key);
}
/***************************************************************************
* Red-black tree insertion.
***************************************************************************/
/**
* Inserts the specified key-value pair into the symbol table, overwriting the old
* value with the new value if the symbol table already contains the specified key.
* Deletes the specified key (and its associated value) from this symbol table
* if the specified value is {@code null}.
*
* @param key the key
* @param val the value
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
void put(Key key, Value val) {
root = put(root, key, val);
root->color = BLACK;
}
/***************************************************************************
* Red-black tree deletion.
***************************************************************************/
/**
* Removes the smallest key and associated value from the symbol table.
* @throws NoSuchElementException if the symbol table is empty
*/
void deleteMin() {
if (isEmpty()) throw runtime_error("BST underflow");
// if both children of root are black, set root to red
if (!isRed(root->left) && !isRed(root->right))
root->color = RED;
root = deleteMin(root);
if (!isEmpty()) root->color = BLACK;
// assert check();
}
/**
* Removes the largest key and associated value from the symbol table.
* @throws NoSuchElementException if the symbol table is empty
*/
void deleteMax() {
if (isEmpty()) throw runtime_error("BST underflow");
// if both children of root are black, set root to red
if (!isRed(root->left) && !isRed(root->right))
root->color = RED;
root = deleteMax(root);
if (!isEmpty()) root->color = BLACK;
// assert check();
}
/**
* Removes the specified key and its associated value from this symbol table
* (if the key is in this symbol table).
*
* @param key the key
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
void delete_op(Key key) {
if (!contains(key)) return;
// if both children of root are black, set root to red
if (!isRed(root->left) && !isRed(root->right))
root->color = RED;
root = delete_op(root, key);
if (!isEmpty()) root->color = BLACK;
// assert check();
}
/***************************************************************************
* Utility functions.
***************************************************************************/
/**
* Returns the height of the BST (for debugging).
* @return the height of the BST (a 1-node tree has height 0)
*/
int height() {
return height(root);
}
/***************************************************************************
* Ordered symbol table methods.
***************************************************************************/
/**
* Returns the smallest key in the symbol table.
* @return the smallest key in the symbol table
* @throws NoSuchElementException if the symbol table is empty
*/
Key min() {
if (isEmpty()) throw runtime_error("calls min() with empty symbol table");
return min(root)->key;
}
/**
* Returns the largest key in the symbol table.
* @return the largest key in the symbol table
* @throws NoSuchElementException if the symbol table is empty
*/
Key max() {
if (isEmpty()) throw runtime_error("calls max() with empty symbol table");
return max(root)->key;
}
/**
* Returns the largest key in the symbol table less than or equal to {@code key}.
* @param key the key
* @return the largest key in the symbol table less than or equal to {@code key}
* @throws NoSuchElementException if there is no such key
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
Key floor(Key key) {
if (isEmpty()) throw runtime_error("calls floor() with empty symbol table");
Node *x = floor(root, key);
if (x == nullptr) throw runtime_error("illegal key");
else return x->key;
}
/**
* Returns the smallest key in the symbol table greater than or equal to {@code key}.
* @param key the key
* @return the smallest key in the symbol table greater than or equal to {@code key}
* @throws NoSuchElementException if there is no such key
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
Key ceiling(Key key) {
if (isEmpty()) throw runtime_error("calls ceiling() with empty symbol table");
Node *x = ceiling(root, key);
if (x == nullptr) throw runtime_error("illegal key");
else return x->key;
}
/**
* Return the key in the symbol table whose rank is {@code k}.
* This is the (k+1)st smallest key in the symbol table.
*
* @param k the order statistic
* @return the key in the symbol table of rank {@code k}
* @throws IllegalArgumentException unless {@code k} is between 0 and
* <em>n</em>–1
*/
Key select(int k) {
if (k < 0 || k >= size()) {
throw runtime_error("argument to select() is invalid: " + k);
}
Node *x = select(root, k);
return x->key;
}
/**
* Return the number of keys in the symbol table strictly less than {@code key}.
* @param key the key
* @return the number of keys in the symbol table strictly less than {@code key}
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
int rank(Key key) {
return rank(key, root);
}
/***************************************************************************
* Range count and range search.
***************************************************************************/
vector<Key> midOrder() {
vector<Key> res;
midOrder(root, res);
return res;
}
private:
static bool RED;
static bool BLACK;
// BST helper node data type
class Node {
public:
Key key; // key
Value val; // associated data
Node *left, *right; // links to left and right subtrees
bool color; // color of parent link
int size; // subtree count
Node(Key key_, Value val_, bool color_, int size_) : key(key_), val(val_), color(color_), size(size_), left(
nullptr), right(nullptr) {}
};
private:
/***************************************************************************
* Node helper methods.
***************************************************************************/
// is node x red; false if x is null ?
bool isRed(Node *x) {
if (x == nullptr) return false;
return x->color == RED;
}
// number of node in subtree rooted at x; 0 if x is null
int size(Node *x) {
if (x == nullptr) return 0;
return x->size;
}
/***************************************************************************
* Standard BST search.
***************************************************************************/
// value associated with the given key in subtree rooted at x; null if no such key
Value get(Node *x, Key key) {
while (x != nullptr) {
if (key < x->key) x = x->left;
else if (key > x->key) x = x->right;
else return x->val;
}
throw runtime_error("can not find this key");
}
// Does this symbol table contain the given key?
bool contains(Node *x, Key key) {
while (x != nullptr) {
if (key < x->key) x = x->left;
else if (key > x->key) x = x->right;
else return true;
}
return false;
}
/***************************************************************************
* Red-black tree insertion.
***************************************************************************/
// insert the key-value pair in the subtree rooted at h
Node *put(Node *h, Key key, Value val) {
if (h == nullptr) return new Node(key, val, RED, 1);
if (key < h->key) h->left = put(h->left, key, val);
else if (key > h->key) h->right = put(h->right, key, val);
else h->val = val;
// fix-up any right-leaning links (p436)
if (isRed(h->right) && !isRed(h->left)) h = rotateLeft(h);
if (isRed(h->left) && isRed(h->left->left)) h = rotateRight(h);
if (isRed(h->left) && isRed(h->right)) flipColors(h);
h->size = size(h->left) + size(h->right) + 1;
return h;
}
private:
/***************************************************************************
* Red-black tree helper functions.
***************************************************************************/
// make a left-leaning link lean to the right (p434)
Node *rotateRight(Node *h) {
if (!isRed(h->left) || h == nullptr) throw runtime_error("illegal rotate right");
Node *x = h->left;
h->left = x->right;
x->right = h;
x->color = x->right->color;
x->right->color = RED;
x->size = h->size;
h->size = size(h->left) + size(h->right) + 1;
return x;
}
// make a right-leaning link lean to the left (p434)
Node *rotateLeft(Node *h) {
if (h == nullptr || !isRed(h->right)) throw runtime_error("illegal rotate left");
Node *x = h->right;
h->right = x->left;
x->left = h;
x->color = x->left->color;
x->left->color = RED;
x->size = h->size;
h->size = size(h->left) + size(h->right) + 1;
return x;
}
// flip the colors of a node and its two children (p436)
void flipColors(Node *h) {
// h must have opposite color of its two children
// if (!((h != nullptr) && (h->left != nullptr) && (h->right != nullptr)))
// throw runtime_error("illegal inputs");
// if (!((!isRed(h) && isRed(h->left) && isRed(h->right)) || (isRed(h) && !isRed(h->left) && !isRed(h->right))))
// throw runtime_error("illegal inputs");
h->color = !h->color;
h->left->color = !h->left->color;
h->right->color = !h->right->color;
}
// TODO
// Assuming that h is red and both h.left and h.left.left
// are black, make h.left or one of its children red.
Node *moveRedLeft(Node *h) {
// if (h == nullptr) throw runtime_error("illegal input");
// if (!(isRed(h) && !isRed(h->left) && !isRed(h->left->left)) throw runtime_error("illegal input");
flipColors(h);
if (isRed(h->right->left)) {
h->right = rotateRight(h->right);
h = rotateLeft(h);
flipColors(h);
}
return h;
}
// Assuming that h is red and both h.right and h.right.left
// are black, make h.right or one of its children red.
Node *moveRedRight(Node *h) {
// assert (h != null);
// assert isRed(h) && !isRed(h.right) && !isRed(h.right.left);
flipColors(h);
if (isRed(h->left->left)) {
h = rotateRight(h);
flipColors(h);
}
return h;
}
// restore red-black tree invariant
Node *balance(Node *h) {
// assert (h != null);
if (isRed(h->right)) h = rotateLeft(h);
if (isRed(h->left) && isRed(h->left->left)) h = rotateRight(h);
if (isRed(h->left) && isRed(h->right)) flipColors(h);
h->size = size(h->left) + size(h->right) + 1;
return h;
}
/***************************************************************************
* Red-black tree deletion.
***************************************************************************/
// delete the key-value pair with the minimum key rooted at h
Node *deleteMin(Node *h) {
if (h->left == nullptr)
return nullptr;
if (!isRed(h->left) && !isRed(h->left->left))
h = moveRedLeft(h);
h->left = deleteMin(h->left);
return balance(h);
}
// delete the key-value pair with the maximum key rooted at h
Node *deleteMax(Node *h) {
if (isRed(h->left))
h = rotateRight(h);
if (h->right == nullptr)
return nullptr;
if (!isRed(h->right) && !isRed(h->right->left))
h = moveRedRight(h);
h->right = deleteMax(h->right);
return balance(h);
}
// delete the key-value pair with the given key rooted at h
Node *delete_op(Node *h, Key key) {
// assert get(h, key) != null;
if (key < h->key) {
if (!isRed(h->left) && !isRed(h->left->left))
h = moveRedLeft(h);
h->left = delete_op(h->left, key);
} else {
if (isRed(h->left))
h = rotateRight(h);
if ((key == h->key) && (h->right == nullptr))
return nullptr;
if (!isRed(h->right) && !isRed(h->right->left))
h = moveRedRight(h);
if (key == h->key) {
Node *x = min(h->right);
h->key = x->key;
h->val = x->val;
// h.val = get(h.right, min(h.right).key);
// h.key = min(h.right).key;
h->right = deleteMin(h->right);
} else h->right = delete_op(h->right, key);
}
return balance(h);
}
/***************************************************************************
* Utility functions.
***************************************************************************/
// Returns the height of the BST (for debugging).
int height(Node *x) {
if (x == nullptr) return -1;
return 1 + std::max(height(x->left), height(x->right));
}
/***************************************************************************
* Ordered symbol table methods.
***************************************************************************/
// the smallest key in subtree rooted at x; null if no such key
Node *min(Node *x) {
// assert x != null;
if (x->left == nullptr) return x;
else return min(x->left);
}
// the largest key in the subtree rooted at x; null if no such key
Node *max(Node *x) {
// assert x != null;
if (x->right == nullptr) return x;
else return max(x->right);
}
// the largest key in the subtree rooted at x less than or equal to the given key
Node *floor(Node *x, Key key) {
if (x == nullptr) return nullptr;
if (key == x->key) return x;
if (key < x->key) return floor(x->left, key);
Node *t = floor(x->right, key);
if (t != nullptr) return t;
else return x;
}
// the smallest key in the subtree rooted at x greater than or equal to the given key
Node *ceiling(Node *x, Key key) {
if (x == nullptr) return nullptr;
if (key == x->key) return x;
if (key > x->key) return ceiling(x->right, key);
Node *t = ceiling(x->left, key);
if (t != nullptr) return t;
else return x;
}
// the key of rank k in the subtree rooted at x
Node *select(Node *x, int k) {
// assert x != null;
// assert k >= 0 && k < size(x);
int t = size(x->left);
if (t > k) return select(x->left, k);
else if (t < k) return select(x->right, k - t - 1);
else return x;
}
// number of keys less than key in the subtree rooted at x
int rank(Key key, Node *x) {
if (x == nullptr) return 0;
if (key < x->key) return rank(key, x->left);
else if (key > x->key) return 1 + size(x->left) + rank(key, x->right);
else return size(x->left);
}
/***************************************************************************
* Range count and range search.
***************************************************************************/
void midOrder(Node *x, vector<Key> &res) {
if (x == nullptr) return;
if (x->left == nullptr && x->right == nullptr) {
res.push_back(x->key);
return;
}
if (x->left) midOrder(x->left, res);
res.push_back(x->key);
if (x->right) midOrder(x->right, res);
}
private:
Node *root; // root of the BST
};
template<typename Key, typename Value>
bool RedBlackBST<Key, Value>::RED = true;
template<typename Key, typename Value>
bool RedBlackBST<Key, Value>::BLACK = false;
#endif //CH3_REDBLACKBST_H