-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbackend.py
233 lines (176 loc) · 7.48 KB
/
backend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import pandas as pd
import numpy as np
import pandas as pd
import numpy as np
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
models = ("Course Similarity",
"User Profile",
"Clustering",
# "Clustering with PCA",
# "KNN",
# "NMF",
# "Neural Network",
# "Regression with Embedding Features",
# "Classification with Embedding Features"
)
def load_ratings():
return pd.read_csv("ratings.csv")
def load_course_sims():
return pd.read_csv("sim.csv")
def load_courses():
df = pd.read_csv("course_processed.csv")
df['TITLE'] = df['TITLE'].str.title()
return df
def load_profile():
return pd.read_csv("user_profile.csv")
def load_courses_genre():
return pd.read_csv("course_genre.csv")
def load_bow():
return pd.read_csv("courses_bows.csv")
def add_new_ratings(new_courses):
res_dict = {}
if len(new_courses) > 0:
# Create a new user id, max id + 1
ratings_df = load_ratings()
new_id = ratings_df['user'].max() + 1
users = [new_id] * len(new_courses)
ratings = [3.0] * len(new_courses)
res_dict['user'] = users
res_dict['item'] = new_courses
res_dict['rating'] = ratings
new_df = pd.DataFrame(res_dict)
updated_ratings = pd.concat([ratings_df, new_df])
updated_ratings.to_csv("ratings.csv", index=False)
return new_id
# Create course id to index and index to id mappings
def get_doc_dicts():
bow_df = load_bow()
grouped_df = bow_df.groupby(['doc_index', 'doc_id']).max().reset_index(drop=False)
idx_id_dict = grouped_df[['doc_id']].to_dict()['doc_id']
id_idx_dict = {v: k for k, v in idx_id_dict.items()}
del grouped_df
return idx_id_dict, id_idx_dict
def course_similarity_recommendations(idx_id_dict, id_idx_dict, enrolled_course_ids, sim_matrix):
all_courses = set(idx_id_dict.values())
unselected_course_ids = all_courses.difference(enrolled_course_ids)
# Create a dictionary to store your recommendation results
res = {}
# First find all enrolled courses for user
for enrolled_course in enrolled_course_ids:
for unselect_course in unselected_course_ids:
if enrolled_course in id_idx_dict and unselect_course in id_idx_dict:
idx1 = id_idx_dict[enrolled_course]
idx2 = id_idx_dict[unselect_course]
sim = sim_matrix[idx1][idx2]
if unselect_course not in res:
res[unselect_course] = sim
else:
if sim >= res[unselect_course]:
res[unselect_course] = sim
res = {k: v for k, v in sorted(res.items(), key=lambda item: item[1], reverse=True)}
return res
# Model training
def train(model_name, params):
# TODO: Add model training code here
if "cluster_no" in params:
cluster_no = params["cluster_no"]
if model_name == models[2]:
user_profile_df = load_profile()
scaler = StandardScaler()
feature_names = list(user_profile_df.columns[1:])
features = user_profile_df.loc[:, user_profile_df.columns != 'user']
user_profile_df[feature_names] = scaler.fit_transform(user_profile_df[feature_names])
user_ids = user_profile_df.loc[:, user_profile_df.columns == 'user']
km = KMeans(n_clusters=cluster_no, random_state=42)
km = km.fit(features)
cluster_labels = km.labels_
res_df = combine_cluster_labels(user_ids,labels=cluster_labels)
return res_df
def combine_cluster_labels(user_ids, labels):
labels_df = pd.DataFrame(labels)
cluster_df = pd.merge(user_ids, labels_df, left_index=True, right_index=True)
cluster_df.columns = ['user', 'cluster']
return cluster_df
# Prediction
def predict(model_name, user_ids, params):
sim_threshold = 0.6
profile_sim_threshold = 10.0
# if "sim_threshold" in params:
# sim_threshold = params["sim_threshold"] / 100.0
idx_id_dict, id_idx_dict = get_doc_dicts()
sim_matrix = load_course_sims().to_numpy()
users = []
courses = []
# if "user_id" in params:
# temp_user = params["user_id"]
# temp_user = int(temp_user)
scores = []
res_dict = {}
if "profile_sim_threshold" in params:
profile_sim_threshold = params["profile_sim_threshold"]
elif "sim_threshold" in params:
sim_threshold = params["sim_threshold"] / 100.0
elif "cluster_no" in params:
cluster_no = params["cluster_no"]
temp_user_two = params["temp_user_two"]
temp_user_two = int(temp_user_two)
else:
pass
for user_id in user_ids:
# Course Similarity model
if model_name == models[0]:
ratings_df = load_ratings()
user_ratings = ratings_df[ratings_df['user'] == user_id]
enrolled_course_ids = user_ratings['item'].to_list()
res = course_similarity_recommendations(idx_id_dict, id_idx_dict, enrolled_course_ids, sim_matrix)
for key, score in res.items():
if score >= sim_threshold:
users.append(user_id)
courses.append(key)
scores.append(score)
res_dict['USER'] = users
res_dict['COURSE_ID'] = courses
res_dict['SCORE'] = scores
res_df = pd.DataFrame(res_dict, columns=['USER', 'COURSE_ID', 'SCORE'])
else:
break
# TODO: Add prediction model code here
if model_name == models[1]:
if "user_id" in params:
temp_user = params['user_id']
temp_user = int(temp_user)
else:
pass
ratings_df = load_ratings()
profile_df =load_profile()
course_genres_df =load_courses_genre()
all_courses = set(course_genres_df['COURSE_ID'].values)
test_user_profile = profile_df[profile_df['user'] == temp_user]
# get user vector for the current user id
test_user_vector = test_user_profile.iloc[0, 1:].values
# get the unknown course ids for the current user id
enrolled_courses = ratings_df[ratings_df['user'] == temp_user]['item'].to_list()
unknown_courses = all_courses.difference(enrolled_courses)
unknown_course_df = course_genres_df[course_genres_df['COURSE_ID'].isin(unknown_courses)]
unknown_course_ids = unknown_course_df['COURSE_ID'].values
course_matrix = unknown_course_df.iloc[:, 2:].values
# user np.dot() to get the recommendation scores for each course
recommendation_scores = np.dot(course_matrix,test_user_vector)
for i in range(0, len(unknown_course_ids)):
score = recommendation_scores[i]
# Only keep the courses with high recommendation score
if score >= profile_sim_threshold:
courses.append(unknown_course_ids[i])
scores.append(recommendation_scores[i])
res_dict['COURSE_ID'] = courses
res_dict['SCORE'] = scores
res_df = pd.DataFrame(res_dict, columns=['COURSE_ID', 'SCORE'])
if model_name == models[2]:
res_df=train(model_name, params)
filt = res_df['user']== temp_user_two
cluster_value = int(res_df[filt]['cluster'])
filt2 = res_df['cluster'] == cluster_value
res_df =res_df[filt2]
return res_df