-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
287 lines (251 loc) · 12.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
# SPDX-FileCopyrightText: 2022 Ashis Ravindran <ashis(dot)r91(at)gmail.com>
#
# SPDX-License-Identifier: BSD-3-Clause
import torch
import time
import sys
from load_save_model import checkpoint_save_stage
import os
from torch.optim.lr_scheduler import ReduceLROnPlateau
from tensorboard_local import TensorBoard
class Trainer():
def __init__(self,loss = None,metric = None,log_dir=None,validate_every = 1,verborrea = True):
self.loss_ce = loss
self.metric = metric
self.verborrea = verborrea
self.USE_CUDA = torch.cuda.is_available()
self.tb_logger = None
self.validate_every = validate_every
if log_dir is not None:
self.tb_logger = TensorBoard(log_dir, 20) # log every 20th image
def Train(self,model, optimizer, TrainSet, TestSet, Train_mode, Model_name, Dataset, epochs=None, scheduler=None):
if self.loss_ce is None:
print("Loss function not set,exiting...")
sys.exit()
if scheduler is None and epochs is None:
print('WARNING!!!!Creating default min scheduler')
scheduler = ReduceLROnPlateau(optimizer, "min", verbose=True,patience=10,eps=1e-8)
path_checkpoint = os.getcwd()+'/CHECKPOINT/checkpoint_'+Model_name+'_'+Train_mode+'_'+Dataset+'/CHECKPOINT.t7'
print('Checkpoint path',path_checkpoint)
scheduler_mode = scheduler.mode
max_lr,list_lr = self.update_list_lr(optimizer)
trainloss_to_fil=[]
testloss_to_fil=[]
trainMetric_to_fil=[]
testMetric_to_fil=[]
if isinstance(scheduler,ReduceLROnPlateau):
patience_num=scheduler.patience
else:
print('Scheduler not supported. But training will continue if epochs are specified.')
if epochs==None:
print('WARNING!!!! Number of epochs not specified')
sys.exit()
patience_num='nothing'
parameters=[[],[],patience_num,optimizer.param_groups[0]['weight_decay']]#first list for epochs, second for learning rate,3rd patience, 4th weight_decay,5 for time
parameters[1].append(list_lr)
epoch=0
if epochs==0:
keep_training=False
else:
keep_training=True
print ('INITIAL TEST STATISTICS')
loss_test,metric = self.evaluate(model,TestSet)
checkpoint_save_stage(model,trainloss_to_fil,testloss_to_fil,trainMetric_to_fil,testMetric_to_fil,parameters,Model_name,Train_mode,Dataset)
check_load=0
if isinstance(scheduler,ReduceLROnPlateau):
if scheduler_mode == 'min':
scheduler.step(loss_test)
else:
scheduler.step(metric)
else:
best_test = loss_test
scheduler.step()
since_init=time.time()
while keep_training:
epoch=epoch+1
if epochs !=None:
if self.verborrea:
print('Epoch {}/{}, lr={}. patience={}, weight decay={}'.format(epoch, epochs,max_lr,scheduler.patience,optimizer.param_groups[0]['weight_decay']))
else:
if self.verborrea:
print('Epoch {}, lr={}, patience={}, weight decay={}'.format(epoch,max_lr,scheduler.patience,optimizer.param_groups[0]['weight_decay']))
if self.verborrea:
print('-' * 20)
if self.verborrea:
print ('TRAIN STATISTICS')
train_loss,train_metric= self.train_scratch(model,TrainSet,optimizer,epoch) #Training happens here!
if epoch % self.validate_every == 0 :
if self.verborrea:
print ('TEST STATISTICS')
print('Validating at epoch',epoch)
test_loss,test_metric= self.evaluate(model,TestSet,epoch)
trainloss_to_fil.append(train_loss)
testloss_to_fil.append(test_loss)
trainMetric_to_fil.append(train_metric)
testMetric_to_fil.append(test_metric)
if isinstance(scheduler,ReduceLROnPlateau):
prev_num_bad_epochs=scheduler.num_bad_epochs
if self.verborrea:
print('-' * 10)
if scheduler_mode =='min':
save=(test_loss< scheduler.best)
scheduler.step(test_loss)
else:
save=(test_metric>scheduler.best)
scheduler.step(test_metric)
print('Best', scheduler.best)
if save:
checkpoint_save_stage(model,trainloss_to_fil,testloss_to_fil,trainMetric_to_fil,testMetric_to_fil,parameters,Model_name,Train_mode,Dataset)
check_load=0
if scheduler.num_bad_epochs==0 and prev_num_bad_epochs==scheduler.patience and not save:
max_lr,list_lr=self.update_list_lr(optimizer)
parameters[0].append(epoch)
parameters[1].append(max_lr)
model.load_state_dict(torch.load(path_checkpoint))
check_load=check_load+1
if self.verborrea: print ('Checkpoint loaded')
if max_lr<10*scheduler.eps or check_load==6:
keep_training=False
else:
prev_max_lr=max_lr
scheduler.step()
max_lr,list_lr = self.update_list_lr(optimizer)
if test_loss<=best_test:
checkpoint_save_stage(model,trainloss_to_fil,testloss_to_fil,trainMetric_to_fil,testMetric_to_fil,parameters,Model_name,Train_mode,Dataset)
if max_lr<prev_max_lr:
parameters[0].append(epoch)
parameters[1].append(max_lr)
model.load_state_dict(torch.load(path_checkpoint))
if self.verborrea:
print ('Checkpoint loaded')
if epochs!=None:
if epoch==epochs:
keep_training=False
# if self.verborrea:
# print('-' * 20)
if epochs!=0:
model.load_state_dict(torch.load(path_checkpoint))
if self.verborrea:
print ('Checkpoint loaded')
parameters[0].append(epoch)
print ('FINAL TRAIN STATISTICS')
train_loss,train_metric= self.evaluate(model,TrainSet)
print ('FINAL TEST STATISTICS')
test_loss,test_metric= self.evaluate(model,TestSet)
trainloss_to_fil.append(train_loss)
testloss_to_fil.append(test_loss)
trainMetric_to_fil.append(train_metric)
testMetric_to_fil.append(test_metric)
time_elapsed=time.time()-since_init
print('Total time elapsed',time_elapsed)
parameters.append(time_elapsed)
return (trainloss_to_fil,testloss_to_fil,trainMetric_to_fil,testMetric_to_fil,parameters)
def train_scratch(self,model,DataSet,optimizer,epoch): #eval is not correct in the method
_loss=0
_correct=0
model.train()
kwargs ={}
for batch_idx, data in enumerate(DataSet):
if len(data) == 3:
inputs, target,distances = data
if self.USE_CUDA:
inputs, distances, target = inputs.cuda(),distances.cuda(),target.cuda()
model.cuda()
kwargs['labels'] = target
else:
inputs,distances = data
if self.USE_CUDA:
inputs, distances = inputs.cuda(),distances.cuda()
model.cuda()
optimizer.zero_grad()
prediction = model(inputs)
distances= distances.squeeze(1)
total_loss = self.loss_ce(prediction, distances,**kwargs)
total_loss.backward()
optimizer.step()
_loss += total_loss.item()
if self.metric is not None:
_correct += self.metric(prediction,distances)
#print(prediction[0].grad)
# log to tensorboard
if self.tb_logger is not None:
step = epoch * len(DataSet.dataset) + batch_idx
self.tb_logger.log_scalar(tag='train_Loss', value = total_loss.item(), step=step)
#self.tb_logger.log_scalar(tag='train_grad', value = model.features.weight.grad.mean().item(), step=step)
# check if we log images in this iteration
log_image_interval = self.tb_logger.log_image_interval
if step % log_image_interval == 0:
self.tb_logger.log_image(tag='train_Input', image= inputs[0,0].to('cpu'), step= step)
if distances.dim() ==3:
distances= distances[0]
else:
distances= distances[0,0]
self.tb_logger.log_image(tag='train_Target_Affinity', image= distances.to('cpu'), step=step),
if isinstance(prediction, list):
prediction = prediction[1] #take object probabilities
self.tb_logger.log_image(tag='train_Prediction_Affinity', image= prediction[0,0].to('cpu').detach(), step=step)
_loss_average=_loss/len(DataSet.dataset)
if self.metric is not None:
_acc=_correct/float(batch_idx+1)# Average over all batches
if self.verborrea:
print('Accuracy: ',_acc.item())
if self.verborrea:
print('Loss: ',_loss)
print('Average Loss: ',_loss_average)
return _loss_average,0.0
def evaluate(self,model,DataSet,epoch=None):
kwargs ={}
model.eval()
_loss=0
_correct = 0
with torch.no_grad():
for batch_idx, data in enumerate(DataSet):
if len(data) == 3:
inputs, target,distances = data
if self.USE_CUDA:
inputs, distances, target = inputs.cuda(),distances.cuda(),target.cuda()
model.cuda()
kwargs['labels'] = target
else:
inputs,distances = data
if self.USE_CUDA:
inputs, distances = inputs.cuda(),distances.cuda()
model.cuda()
prediction = model(inputs)
distances = distances.squeeze(1)
total_loss=self.loss_ce(prediction, distances,**kwargs)
_loss += total_loss.item()
if self.metric is not None:
_correct += self.metric(prediction,target)
_loss_average =_loss/len(DataSet.dataset)
if self.metric is not None:
_acc=_correct/float(batch_idx+1)# Average over all batches
if self.verborrea:
print('Accuracy: ',_acc.item())
if epoch is not None:
step = epoch * len(DataSet.dataset)
if self.tb_logger is not None:
assert step is not None, "Need to know the current step to log validation results."
self.tb_logger.log_scalar(tag='val_loss', value=_loss_average, step=step)
if self.metric is not None:
self.tb_logger.log_scalar(tag='val_metric', value=_acc.item(), step=step)
# we always log the last validation images
self.tb_logger.log_image(tag='val_Input', image=inputs[0,0].to('cpu'), step=step)
if distances.dim() ==3:
distances= distances[0]
else:
distances= distances[0,0]
self.tb_logger.log_image(tag='val_Target_Affinity', image=distances.to('cpu'), step=step)
if isinstance(prediction, list):
prediction = prediction[1]
self.tb_logger.log_image(tag='val_Prediction_Affinity', image=prediction[0,0].to('cpu').detach(), step=step)
if self.verborrea:
print('Loss: ',_loss)
print('Average Loss: ',_loss_average)
return _loss_average,0.0
def update_list_lr(self,optimizer):
list_lr=[]
for param in optimizer.param_groups:
list_lr.append(param['lr'])
max_lr=max(list_lr)
return max_lr,list_lr