forked from NVIDIA/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpermute_info.h
344 lines (274 loc) · 11.7 KB
/
permute_info.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
/***************************************************************************************************
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Contains additional metadata about layout permute functions used in the example.
*/
#include "cutlass/tensor_coord.h"
#include "cutlass/layout/permute.h"
/// Additional permutation metadata to facilitate testing/printing
template<typename PermuteLayout>
struct PermuteInfo;
/// Specialization for default case (no permute). Other specializations must follow this template.
template<>
struct PermuteInfo<cutlass::layout::NoPermute> {
/// Whether this is a BMM or GEMM permutation (NoPermute can actually be either)
static bool constexpr kBatched = false;
/// Minimal divisor for row extent
static int constexpr kRowFactor = 1;
/// Minimum divisor for column extent
static int constexpr kColumnFactor = 1;
/// Minimum divisor for batch size dimension
static int constexpr kBatchFactor = 1;
/// Tensor layout used in permutation operation
using Layout = cutlass::layout::PackedVectorLayout;
static std::string name() {
return "NoPermute";
}
/// User-friendly description of the permute operation
static std::string desc() {
return "no permutation";
}
/// Infer original higher-rank tensor shape from GEMM/BMM matrix extents.
/// For direct (output) permutations, must be a simple reshape of extent.
/// For inverse (input) permutations, must return shape *before* permute operation.
/// In case of NoPermute, simply use a linear (rank 1) view of the memory
static Layout::TensorCoord original_shape(cutlass::MatrixCoord extent, int batch_count) {
return Layout::TensorCoord(extent.row() * extent.column() * batch_count);
}
/// Compute the permuted higher-rank tensor shape from the original shape.
static Layout::TensorCoord permute(Layout::TensorCoord const &s) {
return s;
}
};
template<int D1>
struct PermuteInfo<cutlass::layout::Tensor4DPermuteBMM0213RowMajor<D1>> {
static bool constexpr kBatched = true;
static int constexpr kRowFactor = 1;
static int constexpr kColumnFactor = 1;
static int constexpr kBatchFactor = D1;
using Layout = cutlass::layout::TensorNHWC;
static std::string name() {
return "Tensor4DPermuteBMM0213<" + std::to_string(D1) + ">";
}
static std::string desc() {
return "batched GEMM permutation [0, 2, 1, 3]";
}
static Layout::TensorCoord original_shape(cutlass::MatrixCoord extent, int batch_count) {
int D0 = batch_count / D1;
int D2 = extent.row();
int D3 = extent.column();
return {D0, D1, D2, D3};
}
static Layout::TensorCoord permute(Layout::TensorCoord const &s) {
return {s[0], s[2], s[1], s[3]};
}
};
template<int D1>
struct PermuteInfo<cutlass::layout::Tensor4DPermuteBMM0213RowMajorInverse<D1>>
: public PermuteInfo<cutlass::layout::Tensor4DPermuteBMM0213RowMajor<D1>> {
static bool constexpr kBatched = true;
static int constexpr kRowFactor = 1;
static int constexpr kColumnFactor = D1;
static int constexpr kBatchFactor = 1;
using Base = PermuteInfo<cutlass::layout::Tensor4DPermuteBMM0213RowMajor<D1>>;
using Layout = typename Base::Layout;
static typename Layout::TensorCoord original_shape(cutlass::MatrixCoord extent, int batch_count) {
int D0 = batch_count;
int D2 = extent.row();
int D3 = extent.column() / D1;
return {D0, D1, D2, D3};
}
};
template<int D1>
struct PermuteInfo<cutlass::layout::Tensor4DPermuteBMM0321ColumnMajor<D1>> {
static bool constexpr kBatched = true;
static int constexpr kRowFactor = 1;
static int constexpr kColumnFactor = 1;
static int constexpr kBatchFactor = D1;
using Layout = cutlass::layout::TensorNHCW;
static std::string name() {
return "Tensor4DPermuteBMM0321<" + std::to_string(D1) + ">";
}
static std::string desc() {
return "batched GEMM permutation [0, 3, 2, 1]";
}
static Layout::TensorCoord original_shape(cutlass::MatrixCoord extent, int batch_count) {
int D0 = batch_count / D1;
int D2 = extent.row();
int D3 = extent.column();
return {D0, D1, D2, D3};
}
static Layout::TensorCoord permute(Layout::TensorCoord const &s) {
return {s[0], s[3], s[2], s[1]};
}
};
template<int D1>
struct PermuteInfo<cutlass::layout::Tensor4DPermuteBMM0321ColumnMajorInverse<D1>>
: public PermuteInfo<cutlass::layout::Tensor4DPermuteBMM0321ColumnMajor<D1>> {
static bool constexpr kBatched = true;
static int constexpr kRowFactor = D1;
static int constexpr kColumnFactor = 1;
static int constexpr kBatchFactor = 1;
using Base = PermuteInfo<cutlass::layout::Tensor4DPermuteBMM0321ColumnMajor<D1>>;
using Layout = typename Base::Layout;
static typename Layout::TensorCoord original_shape(cutlass::MatrixCoord extent, int batch_count) {
int D0 = batch_count;
int D2 = extent.row() / D1;
int D3 = extent.column();
return {D0, D1, D2, D3};
}
};
template<int D1, int D2>
struct PermuteInfo<cutlass::layout::Tensor4DPermute0213RowMajor<D1, D2>> {
static bool constexpr kBatched = false;
static int constexpr kRowFactor = D1;
static int constexpr kColumnFactor = D2;
static int constexpr kBatchFactor = 1;
using Layout = cutlass::layout::TensorNHWC;
static std::string name() {
return "Tensor4DPermute0213<" + std::to_string(D1) + "," + std::to_string(D2) + ">";
}
static std::string desc() {
return "normal GEMM permutation [0, 2, 1, 3]";
}
static Layout::TensorCoord original_shape(cutlass::MatrixCoord extent, int batch_count) {
int D0 = extent.row() / D1;
int D3 = extent.column() / D2;
return {D0, D1, D2, D3};
}
static Layout::TensorCoord permute(Layout::TensorCoord const &s) {
return {s[0], s[2], s[1], s[3]};
}
};
template<int D1, int D2>
struct PermuteInfo<cutlass::layout::Tensor4DPermute0213RowMajorInverse<D1, D2>>
: public PermuteInfo<cutlass::layout::Tensor4DPermute0213RowMajor<D1, D2>> {
static bool constexpr kBatched = false;
static int constexpr kRowFactor = D2;
static int constexpr kColumnFactor = D1;
static int constexpr kBatchFactor = 1;
using Base = PermuteInfo<cutlass::layout::Tensor4DPermute0213RowMajor<D1, D2>>;
using Layout = typename Base::Layout;
static typename Layout::TensorCoord original_shape(cutlass::MatrixCoord extent, int batch_count) {
int D0 = extent.row() / D2;
int D3 = extent.column() / D1;
return {D0, D1, D2, D3};
}
};
template<int D1, int D2>
struct PermuteInfo<cutlass::layout::Tensor4DPermute0213ColumnMajor<D1, D2>>
: public PermuteInfo<cutlass::layout::Tensor4DPermute0213RowMajor<D1, D2>> {
using Layout = cutlass::layout::TensorCWHN;
};
template<int D1, int D2>
struct PermuteInfo<cutlass::layout::Tensor4DPermute0213ColumnMajorInverse<D1, D2>>
: public PermuteInfo<cutlass::layout::Tensor4DPermute0213RowMajorInverse<D1, D2>> {
using Layout = cutlass::layout::TensorCWHN;
};
template<int T1, int T2, int T3>
struct PermuteInfo<cutlass::layout::Tensor5DPermute20314RowMajor<T1, T2, T3>> {
static bool constexpr kBatched = false;
static int constexpr kRowFactor = T1;
static int constexpr kColumnFactor = T2 * T3;
static int constexpr kBatchFactor = 1;
using Layout = cutlass::layout::TensorNDHWC;
static std::string name() {
return "Tensor5DPermute20314<" + std::to_string(T1) + "," + std::to_string(T2) + "," + std::to_string(T3) + ">";
}
static std::string desc() {
return "normal GEMM permutation [2, 0, 3, 1, 4]";
}
static Layout::TensorCoord original_shape(cutlass::MatrixCoord extent, int batch_count)
{
int const T0 = extent.row() / T1;
int const T4 = extent.column() / (T2 * T3);
return {T0, T1, T2, T3, T4};
}
static Layout::TensorCoord permute(Layout::TensorCoord const &s)
{
return {s[2], s[0], s[3], s[1], s[4]};
}
};
template<int T1, int T2, int T3>
struct PermuteInfo<cutlass::layout::Tensor5DPermute20314RowMajorInverse<T1, T2, T3>>
: public PermuteInfo<cutlass::layout::Tensor5DPermute20314RowMajor<T1, T2, T3>> {
static bool constexpr kBatched = false;
static int constexpr kRowFactor = T2;
static int constexpr kColumnFactor = T1 * T3;
static int constexpr kBatchFactor = 1;
using Base = PermuteInfo<cutlass::layout::Tensor5DPermute20314RowMajor<T1, T2, T3>>;
using Layout = typename Base::Layout;
static typename Layout::TensorCoord original_shape(cutlass::MatrixCoord extent, int batch_count) {
int const T0 = extent.row() / T2;
int const T4 = extent.column() / (T1 * T3);
return {T0, T1, T2, T3, T4};
}
};
template<int T1, int T2, int T3>
struct PermuteInfo<cutlass::layout::Tensor5DPermute02413ColumnMajor<T1, T2, T3>> {
static bool constexpr kBatched = false;
static int constexpr kRowFactor = T1;
static int constexpr kColumnFactor = T2 * T3;
static int constexpr kBatchFactor = 1;
using Layout = cutlass::layout::TensorCWHDN;
static std::string name() {
return "Tensor5DPermute02413<" + std::to_string(T1) + "," + std::to_string(T2) + "," + std::to_string(T3) + ">";
}
static std::string desc() {
return "normal GEMM permutation [0, 2, 4, 1, 3]";
}
using Coord = cutlass::Tensor5DCoord;
static Layout::TensorCoord original_shape(cutlass::MatrixCoord extent, int batch_count)
{
int const T0 = extent.row() / T1;
int const T4 = extent.column() / (T2 * T3);
return {T0, T1, T2, T3, T4};
}
static Layout::TensorCoord permute(Layout::TensorCoord const &s)
{
return {s[0], s[2], s[4], s[1], s[3]};
}
};
template<int T1, int T2, int T3>
struct PermuteInfo<cutlass::layout::Tensor5DPermute02413ColumnMajorInverse<T1, T2, T3>>
: public PermuteInfo<cutlass::layout::Tensor5DPermute02413ColumnMajor<T1, T2, T3>> {
static bool constexpr kBatched = false;
static int constexpr kRowFactor = T2;
static int constexpr kColumnFactor = T1 * T3;
static int constexpr kBatchFactor = 1;
using Base = PermuteInfo<cutlass::layout::Tensor5DPermute02413ColumnMajor<T1, T2, T3>>;
using Layout = typename Base::Layout;
static typename Layout::TensorCoord original_shape(cutlass::MatrixCoord extent, int batch_count) {
int const T0 = extent.row() / T2;
int const T4 = extent.column() / (T1 * T3);
return {T0, T1, T2, T3, T4};
}
};