-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStep10-Training with OpenCV recognizer.py
48 lines (38 loc) · 1.36 KB
/
Step10-Training with OpenCV recognizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import os
import cv2 as cv
import numpy as np
import pickle
from PIL import Image
base = os.path.dirname(os.path.abspath(__file__))
imag_dir = os.path.join(base,"image_data")
face_cascade = cv.CascadeClassifier('haarcascade_frontalface_default.xml')
recog=cv.face.LBPHFaceRecognizer_create()
y_labels = []
x_train = []
current_id=0
label_ids={}
for root,dirs,files in os.walk(imag_dir):
for file in files:
if file.endswith("png") or file.endswith("jpg") or file.endswith("jpeg"):
path=os.path.join(root,file)
label=os.path.basename(root).replace(" ","-").lower()
#print(label,path)
if not label in label_ids:
label_ids[label]=current_id
current_id+=1
id=label_ids[label]
print(label_ids)
pil_image=Image.open(path).convert("L") #grayscale
img_array= np.array(pil_image)
print(img_array)
faces=face_cascade.detectMultiScale(img_array, scaleFactor=1.5,minNeighbors=4)
for (x,y,w,h) in faces:
roi=img_array[y:y+h,x:x+w]
cv.imshow("Test",roi)
cv.waitKey(1)
x_train.append(roi)
y_labels.append(id)
with open ("labels.pickle","wb") as f:
pickle.dump(label_ids,f)
recog.train(x_train,np.array(y_labels))
recog.save("trainer.yml")