-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFlower_classification.py
216 lines (174 loc) · 9.36 KB
/
Flower_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# 先导入函数库
from skimage import io,transform
import glob
import os
import tensorflow as tf
import numpy as np
import time
import cv2
# 数据集地址 && 模型保存地址
path = "/home/z/flower_photos/"
model_path = "/home/z/flower_photos/model.ckpt"
# 将所有的图片resize成100*100的大小
w, h, c = 100, 100, 3
# 读取图片
def read_img(path):
cate = [path+x for x in os.listdir( path ) if os.path.isdir( path+x )]
imgs = []
labels = []
for idx,folder in enumerate( cate ):
for im in glob.glob( folder+'/*.jpg' ):
print( 'reading the images:%s'%( im ) )
img = io.imread( im )
# 当然也可以用transform.resize(), 不过经过测试,发现cv2.resize()的效率会更高
img = cv2.resize( img, ( w, h ) )
# 如果图片不是全部为三通道,要加上下面这行代码,将单通道图片转换成3通道图片
# img = cv2.cvtColor( img, cv2.COLOR_BGR2HSV )
imgs.append( img )
labels.append( idx )
return np.asarray( imgs, np.float32 ), np.asarray( labels, np.int32 )
data,label = read_img(path)
# 打乱顺序
def disorder(data, label):
np.random.seed( int( time.time() ) )
num_example = data.shape[0]
arr = np.arange( num_example )
np.random.shuffle( arr )
data = data[arr]
label = label[arr]
return( data, label )
data, label = disorder( data, label )
# 将所有数据分为训练集和验证集
ratio = 0.382
num_example = data.shape[0]
s = np.int( num_example * ratio )
x_train = data[:s]
y_train = label[:s]
x_val = data[s:]
y_val = label[s:]
‘’‘
下面这一大块就是神经网络的构建:
layer ==> 层数
conv ==> Convolution ==> 卷积函数
pool ==> Pooling ==> 池化函数
relu ==> Relu激活函数
fc ==> Fully Connected Layer ==> 全连接层
’‘’
#----------------------------------------------构建网络--------------------------------------------
x = tf.placeholder(tf.float32,shape=[None,w,h,c],name='x')
y_ = tf.placeholder(tf.int32,shape=[None,],name='y_')
def inference(input_tensor, train, regularizer):
with tf.variable_scope('layer1-conv1'):
conv1_weights = tf.get_variable("weight",[5,5,3,32],initializer=tf.truncated_normal_initializer(stddev=0.1))
conv1_biases = tf.get_variable("bias", [32], initializer=tf.constant_initializer(0.0))
conv1 = tf.nn.conv2d(input_tensor, conv1_weights, strides=[1, 1, 1, 1], padding='SAME')
relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_biases))
with tf.name_scope("layer2-pool1"):
pool1 = tf.nn.max_pool(relu1, ksize = [1,2,2,1],strides=[1,2,2,1],padding="VALID")
with tf.variable_scope("layer3-conv2"):
conv2_weights = tf.get_variable("weight",[5,5,32,64],initializer=tf.truncated_normal_initializer(stddev=0.1))
conv2_biases = tf.get_variable("bias", [64], initializer=tf.constant_initializer(0.0))
conv2 = tf.nn.conv2d(pool1, conv2_weights, strides=[1, 1, 1, 1], padding='SAME')
relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_biases))
with tf.name_scope("layer4-pool2"):
pool2 = tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
with tf.variable_scope("layer5-conv3"):
conv3_weights = tf.get_variable("weight",[3,3,64,128],initializer=tf.truncated_normal_initializer(stddev=0.1))
conv3_biases = tf.get_variable("bias", [128], initializer=tf.constant_initializer(0.0))
conv3 = tf.nn.conv2d(pool2, conv3_weights, strides=[1, 1, 1, 1], padding='SAME')
relu3 = tf.nn.relu(tf.nn.bias_add(conv3, conv3_biases))
with tf.name_scope("layer6-pool3"):
pool3 = tf.nn.max_pool(relu3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
with tf.variable_scope("layer7-conv4"):
conv4_weights = tf.get_variable("weight",[3,3,128,128],initializer=tf.truncated_normal_initializer(stddev=0.1))
conv4_biases = tf.get_variable("bias", [128], initializer=tf.constant_initializer(0.0))
conv4 = tf.nn.conv2d(pool3, conv4_weights, strides=[1, 1, 1, 1], padding='SAME')
relu4 = tf.nn.relu(tf.nn.bias_add(conv4, conv4_biases))
with tf.name_scope("layer8-pool4"):
pool4 = tf.nn.max_pool(relu4, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
nodes = 6*6*128
reshaped = tf.reshape(pool4,[-1,nodes])
with tf.variable_scope('layer9-fc1'):
fc1_weights = tf.get_variable("weight", [nodes, 1024],
initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer != None: tf.add_to_collection('losses', regularizer(fc1_weights))
fc1_biases = tf.get_variable("bias", [1024], initializer=tf.constant_initializer(0.1))
fc1 = tf.nn.relu(tf.matmul(reshaped, fc1_weights) + fc1_biases)
if train: fc1 = tf.nn.dropout(fc1, 0.5)
with tf.variable_scope('layer10-fc2'):
fc2_weights = tf.get_variable("weight", [1024, 512],
initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer != None: tf.add_to_collection('losses', regularizer(fc2_weights))
fc2_biases = tf.get_variable("bias", [512], initializer=tf.constant_initializer(0.1))
fc2 = tf.nn.relu(tf.matmul(fc1, fc2_weights) + fc2_biases)
if train: fc2 = tf.nn.dropout(fc2, 0.5)
# 因为这里的数据集中,花卉被分为5类,所以在下面的fc3_weights和fc3_biases中的参数被设置成了5,
# 如果要用训练的数据集,最终分成多少类别,就把参数改成那个数字
with tf.variable_scope('layer11-fc3'):
fc3_weights = tf.get_variable("weight", [512, 5],
initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer != None: tf.add_to_collection('losses', regularizer(fc3_weights))
fc3_biases = tf.get_variable("bias", [5], initializer=tf.constant_initializer(0.1))
logit = tf.matmul(fc2, fc3_weights) + fc3_biases
return logit
#--------------------------------------网络结束----------------------------------------------
# Regularizer 正则化,正则化可以避免神经网络过度拟合
regularizer = tf.contrib.layers.l2_regularizer(0.000001)
logits = inference(x,False,regularizer)
#(小处理)将logits乘以1赋值给logits_eval,定义name,方便在后续调用模型时通过tensor名字调用输出tensor
b = tf.constant(value=1,dtype=tf.float32)
logits_eval = tf.multiply(logits,b,name='logits_eval')
loss=tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=y_)
# Learning_rate 学习率,神经网络每次梯度下降的步长大小,学习率越大,所需时间越短,学习率越小,训练精度越高。
train_op=tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
correct_prediction = tf.equal(tf.cast(tf.argmax(logits,1),tf.int32), y_)
acc= tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
‘’‘
学习率和正则化的值不是越大越好也不是越小越好,选一个恰当的值可以极大地提高训练精度和训练速度
比如可以从0.1开始调试。
’‘’
#定义一个函数,按批次取数据
def minibatches(inputs=None, targets=None, batch_size=None, shuffle=False):
assert len(inputs) == len(targets)
if shuffle:
indices = np.arange(len(inputs))
np.random.shuffle(indices)
for start_idx in range(0, len(inputs) - batch_size + 1, batch_size):
if shuffle:
excerpt = indices[start_idx:start_idx + batch_size]
else:
excerpt = slice(start_idx, start_idx + batch_size)
yield inputs[excerpt], targets[excerpt]
# 训练和测试数据,可将n_epoch设置更大一些
# n_epoch是训练的迭代次数
n_epoch = 100
‘’‘
batch_size是批尺寸,在合理范围内增大Batch_Size可以提高内存利用率,提高大矩阵乘法的并行效率。
跑完一次 epoch(全数据集)所需的迭代次数减少,对于相同数据量的处理速度进一步加快。
在一定范围内,一般来说 Batch_Size 越大,其确定的下降方向越准,引起训练震荡越小。
但是盲目增大Batch_Size可能会让内存容量撑不住。
跑完一次 epoch(全数据集)所需的迭代次数减少,要想达到相同的精度,其所花费的时间大大增加了,从而对参数的修正也就显得更加缓慢。
对于新手来说,一般建议设置为64。
’‘’
batch_size = 64
saver = tf.train.Saver()
sess = tf.Session()
sess.run(tf.global_variables_initializer())
for epoch in range(n_epoch):
start_time = time.time()
#training
train_loss, train_acc, n_batch = 0, 0, 0
for x_train_a, y_train_a in minibatches(x_train, y_train, batch_size, shuffle=True):
_,err,ac = sess.run([train_op,loss,acc], feed_dict={x: x_train_a, y_: y_train_a})
train_loss += err; train_acc += ac; n_batch += 1
print(" train loss: %f" % (np.sum(train_loss)/ n_batch))
print(" train acc: %f" % (np.sum(train_acc)/ n_batch))
#validation
val_loss, val_acc, n_batch = 0, 0, 0
for x_val_a, y_val_a in minibatches(x_val, y_val, batch_size, shuffle=False):
err, ac = sess.run([loss,acc], feed_dict={x: x_val_a, y_: y_val_a})
val_loss += err; val_acc += ac; n_batch += 1
print(" validation loss: %f" % (np.sum(val_loss)/ n_batch))
print(" validation acc: %f" % (np.sum(val_acc)/ n_batch))
saver.save(sess,model_path)
sess.close()