-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathconcept_distribution.py
97 lines (77 loc) · 3.77 KB
/
concept_distribution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import argparse
import torch
from torch.utils.data import DataLoader
import splice
import experiments.datasets as datasets
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
import os
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-dataset', type=str, required=True)
parser.add_argument('-data_path', type=str)
parser.add_argument('-out_folder', type=str)
parser.add_argument('--verbose', action="store_true")
parser.add_argument('-l1_penalty', type=float, default=0.2)
parser.add_argument('-class_label', type=int)
parser.add_argument('-device', type=str, default="cuda")
parser.add_argument('-model', type=str, default="open_clip:ViT-B-32")
parser.add_argument('-vocab', type=str, default="laion")
parser.add_argument('-vocab_size', type=int, default=10000)
parser.add_argument('-batch_size', type=int, default=512)
parser.add_argument('-plot_topk', type=int, default=10)
args = parser.parse_args()
preprocess = splice.get_preprocess(args.model)
dataset = datasets.load(args.dataset, preprocess, args.data_path)
dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True)
splicemodel = splice.load(args.model, args.vocab, args.vocab_size, args.device, l1_penalty=args.l1_penalty, return_weights=True)
if args.class_label is None:
if args.verbose:
print("Decomposing " + str(args.dataset) + "...")
weights, l0_norm, cosine = splice.decompose_dataset(dataloader, splicemodel, args.device)
else:
if args.verbose:
print("Decomposing class " + str(args.class_label) + "...")
class_weights, l0_norm, cosine = splice.decompose_classes(dataloader, args.class_label, splicemodel, args.device)
weights = class_weights[args.class_label]
vocab = splice.get_vocabulary(args.vocab, args.vocab_size)
_, indices = torch.sort(weights, descending=True)
concept_names = []
concept_weights = []
with open(os.path.join(args.out_folder, "weights.txt"), "w") as f:
f.write("Concept Decomposition: \n")
print("Concept Decomposition:")
for idx in indices.squeeze():
if weights[idx.item()].item() == 0:
break
f.write("\t" + str(vocab[idx.item()]) + "\t" + str(round(weights[idx.item()].item(), 4)) + "\n")
if args.verbose:
print("\t" + str(vocab[idx.item()]) + "\t" + str(round(weights[idx.item()].item(), 4)))
concept_names.append(str(vocab[idx.item()]))
concept_weights.append(weights[idx.item()].item())
if args.verbose:
f.write("Average Decomposition L0 Norm: \t" + str(l0_norm) + "\n")
print("Average Decomposition L0 Norm: \t" + str(l0_norm))
f.write("Average CLIP, SpLiCE Cosine Sim: \t" + str(round(cosine, 4)) + "\n")
print("Average CLIP, SpLiCE Cosine Sim: \t" + str(round(cosine, 4)))
df = pd.DataFrame({"concept":concept_names[:args.plot_topk], "weight":concept_weights[:args.plot_topk]})
sns.set_style("darkgrid", {"axes.facecolor": "whitesmoke"})
colors = ["#e86276ff", "#629d1eff"]
custom_palette = sns.color_palette(colors)
sns.set_palette(custom_palette, 2)
ax = sns.barplot(y="concept", x="weight", data=df, label="concept", orient = 'h')
title = str(args.dataset)
if args.class_label:
title += " Class " + str(args.class_label)
title += " Decomposition"
plt.title(title, fontsize=20)
plt.xlabel('Weight', fontsize=16)
plt.ylabel('Concept', fontsize=16)
ax.get_legend().remove()
sns.despine(bottom=True)
plt.tight_layout()
titlepath="_".join(title.split(" ")).lower()
plt.savefig(os.path.join(args.out_folder, titlepath+".pdf"))
if __name__ == "__main__":
main()