This repository has been archived by the owner on Jan 12, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathheat_transfer.py
87 lines (69 loc) · 2.45 KB
/
heat_transfer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from base_classes import ThermalComponent, EnvironmentalConditions, ThermalLink
from scipy.constants import Stefan_Boltzmann
def incident_radiation_flux(
component: ThermalComponent, environment: EnvironmentalConditions
) -> float:
"""
Returns incident radiation power in W.
Convention: postive number = flux in
Parameters
----------
component: ThermalComponent
component which we are transferring heat to
environment: EnvironmentalConditions
environmental conditions surrounding the spacecraft
Math
----
* Assume the radiative flux source produces x W/m^2 of radiation at some point
* We therefore absorb x * (total radiative surface area) * (proportion of surface area which is illuminated) * emissivity
"""
return (
environment.incident_radiative_flux
* component.rad_area
* component.illumination_factor
* component.emissivity
)
def background_radiation_flux(
component: ThermalComponent, environment: EnvironmentalConditions
) -> float:
"""
Returns radiation power from interactions with the background of space, in W.
Convention: postive number = flux in
Parameters
----------
component: ThermalComponent
component which we are transferring heat to
environment: EnvironmentalConditions
environmental conditions surrounding the spacecraft
Math
----
Q = (Stefan Boltzmann CNST) * emissivity * A * (T1**4 - T2**4) = Heat going from 1 -> 2
"""
background_radiating_area = component.rad_area * (1 - component.illumination_factor)
return (
Stefan_Boltzmann
* (environment.background_temp**4 - component.temp**4)
* background_radiating_area
* component.emissivity
)
def conduction_flux(
component_1: ThermalComponent,
component_2: ThermalComponent,
thermal_link: ThermalLink,
) -> float:
"""
Calculates conduction flux from component 1 to component 2
https://www.nasa.gov/smallsat-institute/sst-soa/thermal-control/
section 7.2.4
Parameters
----------
component_1: ThermalComponent
source component
component_2: ThermalComponent
sink component
k: float
thermal conductance (W/K)
"""
return thermal_link.get_conductance(component_2.temp, component_1.temp) * (
component_1.temp - component_2.temp
)