-
Notifications
You must be signed in to change notification settings - Fork 107
/
Copy pathauc_pr_roc.py
80 lines (65 loc) · 2.76 KB
/
auc_pr_roc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
#!/usr/local/bin/python3
# -*- coding: utf-8 -*-
'''使用real.csv和result.csv表格数据,计算PR ROC曲线的AUC值。'''
import sys
import pandas
#from pandas import DataFrame
from sklearn import metrics
REAL_HEADER = ['Flightno',
'FlightDepcode',
'FlightArrcode',
'PlannedDeptime',
'PlannedArrtime',
'label']
RESULT_HEADER = ['Flightno',
'FlightDepcode',
'FlightArrcode',
'PlannedDeptime',
'PlannedArrtime',
'prob']
def check_column(column1, column2):
'''检查列数据是否一致'''
if not column1.equals(column2):
print('Error: csv column has different data!')
exit(1)
def check_format(real_df, result_df):
'''检查real.csv和result.csv的数据是否合规'''
real_header, result_header = real_df.columns.values.tolist(), result_df.columns.values.tolist()
if REAL_HEADER != real_header or RESULT_HEADER != result_header:
print('Error: csv has different headers!')
print(real_header)
print(result_header)
exit(1)
check_column(real_df['Flightno'], result_df['Flightno'])
check_column(real_df['FlightDepcode'], result_df['FlightDepcode'])
check_column(real_df['FlightArrcode'], result_df['FlightArrcode'])
check_column(real_df['PlannedDeptime'], result_df['PlannedDeptime'])
check_column(real_df['PlannedArrtime'], result_df['PlannedArrtime'])
def load_label_prob(real_csv, result_csv):
'''读取real.csv和result.csv表格数据的label列数组和prob列数组'''
real_df, result_df = pandas.read_csv(real_csv), pandas.read_csv(result_csv)
check_format(real_df, result_df)
label, prob = real_df['label'].values, result_df['prob'].values
# 四舍五入, 小数点后保留4位
for _i, _e in enumerate(prob):
prob[_i] = round(_e, 4)
return label, prob
def auc_roc(real_csv, result_csv):
'''使用real.csv和result.csv列数据,计算ROC曲线的AUC值'''
label, prob = load_label_prob(real_csv, result_csv)
area = metrics.roc_auc_score(label, prob)
#print(area)
return area
def auc_pr(real_csv, result_csv):
'''使用real.csv和result.csv列数据,计算PR曲线的AUC值'''
label, prob = load_label_prob(real_csv, result_csv)
precision, recall, _thresholds = metrics.precision_recall_curve(label, prob)
area = metrics.auc(recall, precision)
#print(area)
return area
if __name__ == "__main__":
auc_pr(sys.argv[1], sys.argv[2])
#auc_roc(sys.argv[1], sys.argv[2])
#hard code for test
#print(auc_pr('real.csv', 'result.csv'))
#print(auc_roc('real.csv', 'result.csv'))