-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaugmentation.py
140 lines (127 loc) · 4.98 KB
/
augmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from autoaugment import ImageNetPolicy
import albumentations as A
import albumentations.pytorch as AP
from dataset import KenyanFood13Dataset, KenyanFood13Subset
from settings import cfg
import torch
from torch.utils.data import DataLoader
from torchvision import transforms
import matplotlib.pyplot as plt
import numpy as np
def get_training_augmentation():
train_transform = [
A.Resize(cfg.resize_size, cfg.resize_size),
A.CenterCrop(cfg.input_size, cfg.input_size),
A.RandomRotate90(),
A.Flip(),
A.Transpose(),
A.OneOf([
A.IAAAdditiveGaussianNoise(),
A.GaussNoise(),
], p=0.2),
A.OneOf([
A.MotionBlur(p=.2),
A.MedianBlur(blur_limit=3, p=0.1),
A.Blur(blur_limit=3, p=0.1),
], p=0.2),
A.ShiftScaleRotate(shift_limit=0.0625, scale_limit=0.2, rotate_limit=45, p=0.2),
A.OneOf([
A.OpticalDistortion(p=0.3),
A.GridDistortion(p=.1),
A.IAAPiecewiseAffine(p=0.3),
], p=0.2),
A.OneOf([
A.CLAHE(clip_limit=2),
A.IAASharpen(),
A.IAAEmboss(),
A.RandomBrightnessContrast(),
], p=0.3),
A.HueSaturationValue(p=0.3),
A.Normalize(mean=cfg.mean, std=cfg.std),
AP.ToTensor(),
]
transforms = A.Compose(train_transform)
return lambda img:transforms(image=np.array(img))
def image_resize():
"""
Transforms for resizing, cropping.
"""
resize_transforms = transforms.Compose([transforms.Resize(cfg.resize_size),
transforms.CenterCrop(cfg.input_size),
])
return resize_transforms
def image_preprocess():
"""
Transforms for resizing, cropping, then converting to Tensor.
"""
preprocess_transforms = transforms.Compose([transforms.Resize(cfg.resize_size),
transforms.CenterCrop(cfg.input_size),
transforms.ToTensor()
])
return preprocess_transforms
def common_transforms(mean, std):
"""
Transforms which are common to both the train and test set.
"""
common_transforms = transforms.Compose([
transforms.Resize(cfg.resize_size),
transforms.FiveCrop(cfg.input_size),
transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])),
transforms.Lambda(lambda tensors: torch.stack([transforms.Normalize(mean, std)(t) for t in tensors]))
])
return common_transforms
def data_aug(mean, std):
"""
Data augmentation transforms.
"""
data_aug_transforms = A.Compose([
# transforms.RandomResizedCrop(cfg.input_size),
A.Resize(cfg.input_size, cfg.input_size),
A.CenterCrop(cfg.input_size, cfg.input_size),
A.RandomRotate90(),
A.Flip(),
A.Transpose(),
A.OneOf([
A.IAAAdditiveGaussianNoise(),
A.GaussNoise(),
], p=0.2),
A.OneOf([
A.MotionBlur(p=.2),
A.MedianBlur(blur_limit=3, p=0.1),
A.Blur(blur_limit=3, p=0.1),
], p=0.2),
A.ShiftScaleRotate(shift_limit=0.0625, scale_limit=0.2, rotate_limit=45, p=0.2),
A.OneOf([
A.OpticalDistortion(p=0.3),
A.GridDistortion(p=.1),
A.IAAPiecewiseAffine(p=0.3),
], p=0.2),
A.OneOf([
A.CLAHE(clip_limit=2),
A.IAASharpen(),
A.IAAEmboss(),
A.RandomBrightnessContrast(),
], p=0.3),
A.HueSaturationValue(p=0.3),
# A.RandomResizedCrop(cfg.input_size, cfg.input_size),
# A.CenterCrop(cfg.input_size, cf),
# APy.transforms.ToTensor(),
A.Normalize(mean, std)
])
return data_aug_transforms
def extra_data_aug(mean, std):
"""
Extra data augmentation transforms.
"""
data_aug_transforms = transforms.Compose([transforms.Resize(cfg.resize_size),
transforms.RandomHorizontalFlip(),
transforms.FiveCrop(cfg.input_size), # this is a list of PIL Images
transforms.ColorJitter(),
transforms.Lambda(lambda crops: torch.stack(
[transforms.ToTensor()(crop) for crop in crops])),
transforms.Lambda(lambda tensors: torch.stack(
[transforms.RandomErasing()(t) for t in tensors])),
transforms.Lambda(lambda tensors: torch.stack(
[transforms.Normalize(mean, std)(t) for t in tensors])),
])
return data_aug_transforms