-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatagen.cc
94 lines (72 loc) · 2.86 KB
/
datagen.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#include <iostream>
#include <fstream>
#include <cmath>
#include <valarray>
#include <random>
int main() {
int num_observable = 256;
std::default_random_engine generator;
std::uniform_real_distribution<double> dist_rand(0.5, 1.0);
std::uniform_int_distribution<int> dist_obs(0, num_observable - 1);
std::ofstream file;
for (int num_hidden = 32; num_hidden <=2048 ; num_hidden *= 2) {
std::valarray<std::valarray<double>> transistion(
std::valarray<double>(0.0f, num_hidden), num_hidden);
std::valarray<std::valarray<double>> emission(
std::valarray<double>(0.0f, num_observable), num_hidden);
std::valarray<double> prior(0.0f, num_hidden);
for (auto& row : transistion)
for (auto& num : row)
num = dist_rand(generator);
for (auto& row : emission)
for (auto& num : row)
num = dist_rand(generator);
for (auto& num : prior)
num = dist_rand(generator);
prior /= prior.sum();
for (auto& row : transistion)
row /= row.sum();
for (auto& row : emission)
row /= row.sum();
prior = std::log(prior);
transistion = std::log(transistion);
emission = std::log(emission);
for (int seq_len = 64; seq_len <= 1024; seq_len *= 2) {
std::valarray<unsigned int> sequence((unsigned int) 0, seq_len - 1);
for (auto& num : sequence)
num = dist_obs(generator);
file.open("data/viterbi_"
+ std::to_string(num_hidden)
+ "_"
+ std::to_string(seq_len),
std::ios::binary | std::ios::out | std::ios::trunc);
file.write((char*) &seq_len, sizeof(seq_len));
file.write((char*) &num_hidden, sizeof(num_hidden));
double e;
for (unsigned int i = 0; i < seq_len; i++) {
for (unsigned int j = 0; j < num_hidden; j++) {
for (unsigned int k = 0; k < num_hidden; k++) {
if (i == 0) {
e = prior[j] + emission[j][sequence[0]];
}
else if (i == seq_len - 1) {
e = 0;
}
else {
e = transistion[k][j] + emission[j][sequence[i]];
}
file.write((char*) &e, sizeof(e));
}
}
}
std::cout << "Finished loading matrix with "
<< num_hidden
<< " hidden states and "
<< seq_len
<< " number of observations."
<< std::endl;
file.close();
}
}
return 0;
}