forked from AU-COBRA/ConCert
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPCUICCorrectness.v
579 lines (536 loc) · 27.8 KB
/
PCUICCorrectness.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
(** Proofs of correctness *)
From MetaCoq.Utils Require Import MCUtils.
From MetaCoq.PCUIC Require Import PCUICAst.
From MetaCoq.PCUIC Require Import PCUICAstUtils.
From MetaCoq.PCUIC Require Import PCUICLiftSubst.
From MetaCoq.PCUIC Require Import PCUICTyping.
From MetaCoq.PCUIC Require Import PCUICSubstitution.
From ConCert.Embedding Require Import EnvSubst.
From ConCert.Embedding Require Import Ast.
From ConCert.Embedding Require Import EvalE.
From ConCert.Embedding Require Import PCUICFacts.
From ConCert.Embedding Require Import PCUICTranslate.
From ConCert.Embedding Require Import PCUICCorrectnessAux.
From ConCert.Embedding Require Import Wf.
From ConCert.Embedding Require Import Misc.
From ConCert.Embedding Require Import Utils.
From ConCert.Utils Require Import Automation.
From ConCert.Utils Require Import Env.
From Coq Require Import String.
From Coq Require Import List.
From Coq Require Import Basics.
From Coq Require Import Lia.
From Coq Require Import ssrbool.
From Coq Require Import Arith.
Import ListNotations.
Import NamelessSubst.
Local Set Keyed Unification.
Open Scope nat.
#[local]
Hint Resolve assumption_context_subst
assumption_context_map_vass
PCUICSigmaCalculus.context_assumptions_context : hints.
(** Soundness (In the paper: Theorem 1) *)
Theorem expr_to_term_sound (n : nat) (ρ : env val) Σ1 Σ2
(e1 e2 : expr) (v : val) :
Σ1 ⋈ Σ2 ->
genv_ok Σ1 ->
env_ok Σ1 ρ ->
eval(n, Σ1, ρ, e1) = Ok v ->
e1.[exprs ρ] = e2 ->
iclosed_n 0 e2 = true ->
Σ2 |- t⟦e2⟧Σ1 ⇓ t⟦of_val_i v⟧Σ1.
Proof.
generalize dependent v.
generalize dependent ρ.
generalize dependent e2.
generalize dependent e1.
induction n.
- now intros.
- intros e1 e2 ρ v Hsync Hgeok Hρ_ok He Henv Hc; destruct e1.
+ (* eRel *) simpl in *. autounfold with facts in *. simpl in *.
destruct (lookup_i ρ n0) as [v1| ] eqn:Hlookup; tryfalse; simpl in He; inversion He; subst.
destruct (Nat.ltb n0 (length ρ)) eqn:Hn0.
* destruct (inst_env_i_in _ _ Hn0) as [v2 HH].
destruct HH as [H1 H2].
assert (v = v2) by congruence. subst.
assert (ge_val_ok Σ1 v2) by (apply val_ok_ge_val_ok; eapply All_lookup_i; eauto).
rewrite H2.
eapply PcbvCurr.value_final; eapply Wcbv_of_value_value; eauto with hints.
eapply All_lookup_i; eauto.
* specialize (lookup_i_length_false _ _ Hn0) as Hnone; tryfalse.
+ (* eVar *) simpl; tryfalse.
+ (* eLambda *)
subst. simpl in *.
destruct (eval_type_i 0 ρ t) eqn:Hty; tryfalse; simpl in *.
destruct (valid_env ρ 1 e1) eqn:He1; tryfalse. propify.
inversion He; subst; simpl; eauto with hints.
erewrite eval_type_i_subst_env; eauto.
rewrite subst_env_ty_closed_n_eq with (n := 0) (m := 0); eauto with hints.
+ simpl in *. destruct (valid_env ρ 1 e1) eqn:He1; tryfalse.
inversion He. subst; clear He.
simpl. constructor; eauto.
+ (* eLetIn *)
subst; simpl in *.
unfold is_true in *;
repeat rewrite Bool.andb_true_iff in *.
destruct Hc as [[? ?] ?].
destruct (eval (n, Σ1, ρ, e1_1)) eqn:He1; tryfalse.
destruct (eval_type_i 0 ρ t) eqn:Ht0; tryfalse. inversion He; subst; clear He.
assert (He11 : Σ2 |- t⟦ e1_1 .[ exprs ρ] ⟧ Σ1 ⇓ t⟦ of_val_i v0 ⟧ Σ1)
by (eauto with hints).
assert (ty_expr_env_ok (exprs ρ) 0 e1_1) by (eapply eval_ty_expr_env_ok; eauto with hints).
assert (iclosed_n #|exprs ρ # [e ~> of_val_i v0]| e1_2 = true).
{ simpl. eapply subst_env_iclosed_n_inv with (n := 1); eauto with hints. }
assert (ty_expr_env_ok (exprs ρ # [e ~> of_val_i v0]) 0 e1_2).
{ change (exprs ρ # [e ~> of_val_i v0]) with (exprs (ρ # [e ~> v0])).
eapply eval_ty_expr_env_ok; eauto with hints. simpl.
replace #|ρ| with (#|exprs ρ|) by apply map_length.
eapply subst_env_iclosed_n_inv with (n := 1); eauto with hints. }
assert (val_ok Σ1 v0) by (eapply eval_val_ok; eauto with hints).
assert (He12 : Σ2 |- t⟦ e1_2 .[exprs ((e, v0) :: ρ)] ⟧ Σ1 ⇓ t⟦ of_val_i v ⟧ Σ1).
{ eapply IHn with (ρ := ((e, v0) :: ρ)); simpl; eauto 6 with hints. }
simpl in *. unfold subst_env_i in *.
econstructor; eauto. unfold subst1.
erewrite <- subst_term_subst_env_par_rec in He12 by eauto with hints.
erewrite <- subst_term_subst_env_par_rec; eauto with hints.
rewrite PCUICCSubst.closed_subst by (apply expr_closed_term_closed; auto; eapply of_value_closed; eauto).
now rewrite <- subst_app_simpl.
now eapply ty_expr_env_ok_app_rec with (n := 0) (ρ1 := [(e,of_val_i v0)]).
+ (* eApp *)
autounfold with facts in *. subst; cbn in *.
destruct (expr_eval_general _ _ _ _ e1_2) eqn:He2; tryfalse.
destruct (expr_eval_general _ _ _ _ e1_1) eqn:He1; tryfalse.
apply Bool.andb_true_iff in Hc. destruct Hc as [Hce1 Hce2].
assert (Hneq1 : [t⟦ inst_env_i ρ e1_2 ⟧ Σ1] <> []) by easy.
destruct v1; tryfalse.
* (* application evaluates to a constructor *)
destruct (resolve_constr _ _ _) eqn:Hres; tryfalse.
destruct p as [p tys]. destruct p as [nparams n1].
destruct_match eqn:Har in He; tryfalse.
unfold genv_sync in *.
specialize (Hsync _ _ _ _ _ Hres) as HH.
destruct HH as [[[??]?] [Hdctor?]].
inversion_clear He. simpl_vars_to_apps. subst. simpl in *.
rename e into n0.
rewrite <- mkApps_vars_to_apps; cbn.
rewrite Hres; cbn.
repeat rewrite tApp_mkApps.
rewrite <- mkApps_app.
eapply PcbvCurr.eval_construct; eauto with hints.
assert (Hc : P.mkApps (tConstruct {| inductive_mind := kername_of_string i; inductive_ind := 0 |} n1 [])
(map (expr_to_term Σ1) (map of_val_i l)) = t⟦ of_val_i (vConstr i n0 l) ⟧ Σ1).
{ cbn. rewrite <- mkApps_vars_to_apps; cbn.
now rewrite Hres. }
rewrite Hc.
eapply IHn; eauto with hints.
repeat rewrite map_length. unfold PcbvCurr.cstr_arity. propify. lia.
* destruct c.
** (* the closure corresponds to lambda *)
simpl in *. rename e0 into n0.
simpl in *.
assert (Hv0 : Σ2|- t⟦e1_2 .[ exprs ρ]⟧ Σ1 ⇓ t⟦ of_val_i v0 ⟧ Σ1)
by eauto.
assert (Hv0_ok : val_ok Σ1 v0) by (eapply eval_val_ok; eauto with hints).
assert (Hlam_ok : val_ok Σ1 (vClos e n0 cmLam t t0 e1)) by
(eapply eval_val_ok with(e := e1_1); eauto with hints).
inversion Hlam_ok; subst.
assert (He_ok1 : env_ok Σ1 (e # [n0 ~> v0])) by now constructor.
assert
(Hlam : Σ2 |- t⟦e1_1 .[ exprs ρ]⟧ Σ1 ⇓ t⟦ of_val_i (vClos e n0 cmLam t t0 e1) ⟧ Σ1) by
(eapply IHn with (ρ := ρ); eauto).
assert (AllEnv (fun e1 : expr => iclosed_n 0 e1 = true) (exprs e)).
{ inversion He_ok1. subst.
apply All_map. unfold compose. simpl.
eapply (All_impl (P := fun x => val_ok Σ1 (snd x))); eauto.
intros a ?; destruct a; simpl; eauto with hints. }
assert (iclosed_n 1 (e1 .[ exprs e] 1) = true)
by eauto with hints.
assert (ty_expr_env_ok [(n0, of_val_i v0)] 0 (e1.[exprs e]1)).
{ eapply ty_expr_env_ok_subst_env; eauto; simpl.
change (exprs e # [n0 ~> of_val_i v0]) with (exprs (e # [n0 ~> v0])).
eapply eval_ty_expr_env_ok; eauto. }
assert (Hsubst : Σ2 |- (t⟦e1.[exprs e]1⟧Σ1){0 := t⟦of_val_i v0⟧Σ1} ⇓ t⟦of_val_i v⟧ Σ1).
{ rewrite subst_term_subst_env with (nm := n0); eauto 8 with hints. }
simpl in *.
eapply PcbvCurr.eval_beta; eauto.
rewrite PCUICCSubst.closed_subst
by (apply expr_closed_term_closed; auto;
eapply of_value_closed; eauto); eauto.
** (* the closure corresponds to fix *)
simpl in *. rename e into ρ'. rename e0 into n0.
destruct v0; tryfalse.
simpl in *.
remember (t⟦e1_1.[exprs ρ] ⟧ Σ1) as tm1.
remember (t⟦ e1_2.[exprs ρ] ⟧ Σ1) as tm2.
assert (Hfix : Σ2 |- tm1 ⇓ t⟦ of_val_i (vClos ρ' n0 (cmFix _) t t0 e1) ⟧ Σ1)
by (subst; eauto with hints).
change (tApp tm1 tm2) with (mkApps tm1 [tm2]).
simpl in Hfix.
assert (Hok_ctor: val_ok Σ1 (vConstr i _ l)) by
(eapply eval_val_ok with (e := e1_2); eauto 8 with hints).
inversion Hok_ctor as [ | | | ????? HresC |]; subst; clear Hok_ctor; eauto.
assert (Hconstr : is_constructor 0 [t⟦ of_val_i (vConstr i e l) ⟧ Σ1]).
{ simpl. rewrite <- mkApps_vars_to_apps. cbn.
unfold isConstruct_app.
rewrite decompose_app_mkApps; now rewrite HresC. }
eapply PcbvCurr.eval_fix with (av := t⟦of_val_i (vConstr i e l)⟧Σ1) (argsv := []);
subst; eauto with hints; try reflexivity.
cbn. remember (tFix _ _) as tfix.
assert (Hok_ctor: val_ok Σ1 (vConstr i _ l)) by eauto 8 with hints.
assert (Hok_fix : val_ok Σ1 ((vClos ρ' n0 (cmFix e2) t t0 e1))) by
(eapply eval_val_ok with (ρ := ρ)(e := e1_1); eauto with hints).
assert (tfix = t⟦eFix e2 n0 t t0 (e1.[exprs ρ']2)⟧ Σ1).
{ simpl. inversion Hok_fix; subst. subst.
repeat rewrite subst_env_i_ty_closed_eq; eauto with hints. }
assert (closed tfix).
{ rewrite H0. apply expr_closed_term_closed; auto.
inversion Hok_fix; subst.
simpl. propify; split; eauto with hints. }
repeat rewrite PCUICCSubst.closed_subst by auto.
rewrite simpl_subst_k by auto.
clear Heqtfix. subst tfix.
inversion Hok_fix; subst.
remember (eFix _ _ _ _ _) as efix.
assert (Hexprs : AllEnv (fun e => iclosed_n 0 e = true) (exprs ρ')).
{ apply All_map.
eapply (All_impl (P := fun v => val_ok Σ1 (snd v))); try assumption;
intros a ?; destruct a; cbv; eauto with hints. }
eapply PcbvCurr.eval_beta; eauto with hints.
eapply PcbvCurr.value_final.
eapply Wcbv_value_vars_to_apps; eauto with hints.
now eapply All_value_of_val.
assert (All (fun v0 : val => iclosed_n 0 (of_val_i v0) = true) l).
{ eapply All_impl. apply X. intros.
eapply of_value_closed; eauto with hints. }
remember (vars_to_apps _ _) as args.
assert (ty_expr_env_ok (nil # [e2 ~> efix] # [n0 ~> args]) 0 (e1.[ exprs ρ']2)).
{ subst.
eapply ty_expr_env_ok_subst_env.
assert (H0 : ty_expr_env_ok (exprs ((n0, vConstr i e l) :: (e2, vClos ρ' n0 (cmFix e2) t t0 e1) :: ρ')) 0 e1) by (eapply eval_ty_expr_env_ok; eauto).
cbn in H0. now repeat rewrite subst_env_i_ty_closed_0_eq in H0 by auto.
now eapply closed_exprs. }
assert (closed t⟦ args ⟧ Σ1).
{subst; apply expr_closed_term_closed; auto.
apply vars_to_apps_iclosed_n; eauto. }
rewrite PCUICCSubst.closed_subst by auto.
assert (AllEnv (iclosed_n 0) [(n0, args); (e2, efix)]).
{ subst; repeat constructor; unfold compose; simpl.
now eapply vars_to_apps_iclosed_n. propify; split; eauto with hints. }
rewrite <- subst_app_simpl. simpl.
erewrite subst_term_subst_env_2 with (nm1 := n0) (nm2 := e2) by eauto with hints.
remember ((n0,_) :: (e2,_) :: ρ') as ρ''.
eapply IHn with (ρ := ρ''); subst; eauto with hints.
rewrite <- subst_env_compose_2;
(simpl; eauto using vars_to_apps_iclosed_n with hints; auto with bool hints).
cbn.
now repeat rewrite subst_env_i_ty_closed_0_eq by auto.
* rename e0 into n0.
assert (Hv0 : Σ2 |- t⟦e1_2 .[ exprs ρ]⟧ Σ1 ⇓ t⟦ of_val_i v0 ⟧ Σ1)
by eauto with hints.
assert (Hv0_ok : val_ok Σ1 v0) by eauto 8 with hints.
assert (Hlam_ok : val_ok Σ1 (vTyClos e n0 e1))
by eauto 8 with hints.
inversion Hlam_ok; subst.
assert (He_ok1 : env_ok Σ1 (e # [n0 ~> v0])) by now constructor.
assert
(Hlam : Σ2 |- t⟦e1_1 .[ exprs ρ]⟧ Σ1 ⇓ t⟦ of_val_i (vTyClos e n0 e1) ⟧ Σ1) by
(eapply IHn with (ρ := ρ); eauto).
assert (AllEnv (fun e1 : expr => iclosed_n 0 e1 = true) (exprs e)).
{ inversion He_ok1. subst.
apply All_map. unfold compose. simpl.
eapply (All_impl (P := fun x => val_ok Σ1 (snd x))); eauto.
intros a ?; destruct a; simpl; eauto with hints. }
assert (iclosed_n 1 (e1 .[ exprs e] 1) = true)
by eauto with hints.
assert (ty_expr_env_ok [(n0, of_val_i v0)] 0 (e1.[exprs e]1)).
{ eapply ty_expr_env_ok_subst_env; eauto; simpl.
change (exprs e # [n0 ~> of_val_i v0]) with (exprs (e # [n0 ~> v0])).
eapply eval_ty_expr_env_ok; eauto. }
assert (Hsubst : Σ2 |- (t⟦e1.[exprs e]1⟧Σ1){0 := t⟦of_val_i v0⟧Σ1} ⇓ t⟦of_val_i v⟧ Σ1).
{ rewrite subst_term_subst_env with (nm := n0); eauto 8 with hints. }
simpl in *.
eapply PcbvCurr.eval_beta; eauto.
now rewrite PCUICCSubst.closed_subst by (apply expr_closed_term_closed; auto; eapply of_value_closed; eauto).
+ (* eConstr *)
rename e into n0.
cbn in He. destruct (resolve_constr Σ1 i n0) eqn:Hres; tryfalse.
inversion He; subst; clear He.
simpl in *. rewrite Hres in *. eauto with hints.
+ (* eConst *)
(* The translation does not support constants yet *)
inversion He.
+ (* eCase *)
unfold expr_eval_i in He. destruct p.
(* dealing with the interpreter *)
unfold is_true in Hc; subst; simpl in Hc; repeat rewrite Bool.andb_true_iff in *.
simpl in *.
destruct Hc as [[[Hce1 ?] ?] HH].
destruct (forallb _ l) eqn:Hl; tryfalse.
destruct (eval_type_i _ _ t) eqn:Ht0; tryfalse; simpl in *.
destruct (monad_utils.monad_map) eqn:Hmm; tryfalse.
destruct (expr_eval_general _ _ _ _ e1) eqn:He1; tryfalse.
destruct v0; tryfalse.
destruct (string_dec _ _) eqn:Hi; tryfalse; subst.
unfold resolve_constr in *. simpl.
destruct (resolve_inductive _ _) eqn:HresI; tryfalse.
destruct (lookup_with_ind _ _) eqn:Hfind_i; tryfalse.
destruct p as [nparams cs]. destruct p0 as [i ci]. simpl in *.
rewrite map_length.
destruct_match eqn:Hnparams; tryfalse.
assert (HresC: resolve_constr Σ1 i0 e = Some (nparams,i, ci)).
{ unfold resolve_constr. rewrite HresI. rewrite Hfind_i. reflexivity. }
destruct (match_pat _ _ _ _) eqn:Hpat; tryfalse.
(* dealing with the translation and the evaluation in PCUIC *)
assert (IH' : Σ2 |- t⟦ e1 .[ exprs ρ] ⟧ Σ1 ⇓ t⟦ of_val_i (vConstr i0 e l2) ⟧ Σ1) by
eauto with hints.
simpl in IH'.
destruct p as [nm p_es].
repeat rewrite map_map.
erewrite <- mkApps_vars_to_apps_constr in IH' by eauto.
simpl in IH'.
specialize (lookup_ind_nth_error _ _ _ _ Hfind_i) as Hnth_eq.
rewrite nth_error_map in Hnth_eq. destruct (nth_error cs i) eqn:Nci0; tryfalse.
2 : { rewrite Nci0 in *; tryfalse. }
rewrite Nci0 in Hnth_eq. simpl in Hnth_eq. inversion Hnth_eq. subst e.
(* Exploiting the fact that pattern-matching succeeds *)
apply pat_match_succeeds in Hpat.
destruct Hpat as [pt [Hfnd [Hci [Hl0 Hl2]]]].
destruct (Hsync _ _ _ _ _ HresC) as [x Hctor_decl].
destruct x as [[mib oib] cb].
(* Constructing PCUIC eval derivation for the pattern-matching case *)
specialize Hctor_decl as [H1 H2].
destruct H2 as [Hdctor?].
eapply PcbvCurr.eval_iota; eauto.
* now eapply map_nth_error.
* cbn. rewrite map_length. unfold PcbvCurr.cstr_arity. propify. lia.
* cbn.
unfold etrans_branch.
unfold fun_prod,id; cbn.
remember (fun (x : pat * expr) => t⟦ x.2.[ exprs ρ] (#|pVars x.1|+0)⟧ Σ1) as f.
specialize (find_some_fst_map_snd (p := fun (x : pat) => (pName x =? c.1)%string) (f := f) _ _ Hfnd) as Hv2.
destruct Hv2 as [v2 [Hfindv2 [Heqv2 Hf]]]; unfold compose in Hfindv2; subst f; cbn in *.
rewrite Hfindv2. rewrite <- Heqv2.
inversion Hnth_eq; subst; clear Hnth_eq.
assert (Heq : (#|pVars v2.1| =? #|remove_proj c|)%nat) by (propify; lia).
rewrite Heq; cbn.
assert (Hvass : forall xs, context_assumptions (map (fun '(nm, ty) => vass (aRelevant (nNamed (TCString.of_string nm))) ty) xs) = #|xs|).
{ intros; rewrite PCUICSigmaCalculus.context_assumptions_context by auto with hints.
now rewrite map_length. }
rewrite Hvass. rewrite combine_length, map_length.
lia.
* unfold iota_red in *. simpl in *.
unfold expand_lets,expand_lets_k,inst_case_branch_context,inst_case_context; cbn.
rewrite subst_context_length.
unfold etrans_branch; cbn.
unfold fun_prod,id; cbn.
remember (fun (x : pat * expr) => t⟦ x.2.[ exprs ρ] (#|pVars x.1|+0)⟧ Σ1) as f.
specialize (find_some_fst_map_snd (p := fun (x : pat) => (pName x =? c.1)%string) (f := f) _ _ Hfnd) as Hv2.
destruct Hv2 as [v2 [Hfindv2 [Heqv2 Hf]]]; unfold compose in Hfindv2; subst f; cbn in *.
rewrite Hfindv2. rewrite <- Heqv2.
inversion Hnth_eq; subst; clear Hnth_eq.
assert (Heq : (#|pVars v2.1| =? #|remove_proj c|)%nat) by (propify; lia).
rewrite Heq; cbn.
repeat rewrite map_length. rewrite combine_length,map_length.
replace (min #|pVars v2.1| #|remove_proj c|) with (#|pVars v2.1|) by lia.
rewrite <- map_skipn.
rewrite <- map_rev.
replace ((#|pVars v2.1| + 0)) with (#|pVars v2.1|) in * by lia.
assert (Hok_constr: val_ok Σ1 (vConstr i0 c.1 l2)) by eauto 8 with hints.
inversion Hok_constr; subst; clear Hok_constr.
remember (map (map_decl (subst_instance [])) _) as g.
rewrite <- map_combine_snd_funprod in Heqg.
rewrite All_map_id in Heqg by
(apply All_subst_instance_type_to_term; eauto with hints;
repeat apply All_map; cbn; eauto using All_refl).
rewrite PCUICSigmaCalculus.subst_extended_subst; cbn.
assert (Hext_subst : forall xs k,
assumption_context xs ->
extended_subst xs k = rev (reln [] k xs)).
{ intros xs k Hvass. rewrite reln_alt_eq. rewrite app_nil_r.
rewrite rev_involutive.
generalize dependent k.
induction xs; intros k; cbn; auto.
inversion Hvass; subst; cbn.
replace (k+1) with (1+k) by lia.
apply f_equal2; auto.
}
assert (Hvass_ctx : assumption_context g) by (subst g; auto with hints).
rewrite Hext_subst by assumption.
rewrite map_rev with (l := reln _ _ _).
assert (Hvass_eq : context_assumptions g = #|g|) by
now apply PCUICSigmaCalculus.context_assumptions_context.
change (reln [] 0 g) with (to_extended_list_k g 0).
rewrite <- PCUICSubstitution.to_extended_list_k_map_subst by lia.
specialize (find_forallb_map _ Hfnd HH) as Hclosed_t2; cbn in Hclosed_t2.
erewrite PCUICInstConv.subst_id with (s := rev (_)); eauto.
2: { rewrite rev_length. rewrite to_extended_list_k_length. rewrite Hvass_eq.
subst g. repeat rewrite map_length. rewrite combine_length.
replace (min #|pVars v2.1| #|remove_proj c|) with (#|pVars v2.1|) by lia.
rewrite PCUICSigmaCalculus.context_assumptions_context.
* rewrite subst_context_length.
repeat rewrite map_length. rewrite combine_length,map_length.
replace (min #|pVars v2.1| #|remove_proj c|) with (#|pVars v2.1|) by lia.
replace (#|pVars v2.1| + 0) with #|pVars v2.1| in * by lia.
rewrite <- Hf.
assert (closedn (#|pVars v2.1|) t⟦ p_es.[ exprs ρ] #|pVars v2.1| ⟧ Σ1)
by (apply expr_closed_term_closed; auto).
now rewrite lift_closed.
* auto with hints.
}
assert (Hvass_eq1 : (context_assumptions
(subst_context (rev (map (fun x : type => T⟦ subst_env_i_ty 0 (exprs ρ) x ⟧) l0)) 0 g)) = #|pVars v2.1|).
{ rewrite PCUICSigmaCalculus.context_assumptions_context by auto with hints.
rewrite subst_context_length. subst g.
repeat rewrite map_length. rewrite combine_length.
replace #|remove_proj c| with #|pVars v2.1| by (propify; lia).
now replace (min #|pVars v2.1| #|pVars v2.1|) with #|pVars v2.1| by lia.
}
assert (#|pVars v2.1| = #|skipn (ind_npars mib) l2|) by (rewrite skipn_length; lia).
rewrite Hvass_eq1.
replace (#|pVars v2.1| + 0) with #|pVars v2.1| in * by lia.
assert (closedn #|pVars v2.1| v2.2).
{ rewrite <- Hf. apply expr_closed_term_closed; auto. }
rewrite lift_closed by auto.
rewrite <- Hf.
remember (fun x : val => t⟦ _ ⟧ _) as f.
remember (fun x : string * expr => t⟦ snd x ⟧ Σ1) as h.
remember (t⟦ p_es .[_] _⟧ _) as te3.
assert (Hmap : map f (rev (skipn (ind_npars mib) l2)) =
map h (map (fun_prod id of_val_i)(rev (combine (pVars v2.1) (skipn (ind_npars mib) l2))))).
{ rewrite map_map.
subst h; simpl.
rewrite <- combine_rev by auto.
change (fun x : name * val => t⟦ of_val_i (snd x) ⟧ Σ1) with
(fun x : name * val => ((expr_to_pcuic Σ1) ∘ of_val_i) (snd x)).
rewrite <- map_map with (g := (expr_to_term Σ1) ∘ of_val_i)
(f := snd).
rewrite map_combine_snd. now subst.
now repeat rewrite rev_length. }
rewrite Hmap. subst h te3.
replace (#|pVars v2.1| + 0) with #|pVars v2.1| in * by lia.
apply Nat.eqb_eq in Hnparams.
rewrite subst_term_subst_env_par; eauto with hints.
eapply IHn with (ρ := (rev (combine (pVars v2.1) (skipn (ind_npars mib) l2)) ++ ρ)%list);
eauto with hints.
** eapply All_app_inv; eauto. apply All_rev.
eapply All_env_ok; eauto with hints. now apply All_skipn.
** unfold fun_prod,id.
rewrite map_app.
remember (rev (combine (pVars v2.1) (skipn (ind_npars mib) l2))) as l_rev.
assert (Hlrev : #|pVars v2.1| = #|exprs l_rev|).
{ subst. rewrite map_length.
rewrite rev_length. rewrite combine_length.
rewrite skipn_length; lia. }
rewrite Hlrev.
symmetry. eapply subst_env_swap_app with (n := 0);
eauto with hints.
apply All_map. subst.
apply All_rev. unfold compose. simpl.
apply All_snd_combine with (p := (iclosed_n 0) ∘ of_val_i).
unfold compose.
eapply All_expr_iclosed_of_val; try apply All_skipn; eauto.
** rewrite <- combine_rev by auto.
rewrite map_combine_snd_funprod.
eapply subst_env_iclosed_0; eauto with hints.
remember ((combine (rev (pVars v2.1)) (map of_val_i (rev (skipn _ l2))))) as l_comb.
assert (Hlen : #|l_comb| = #|pVars v2.1|).
{ subst. rewrite combine_length. rewrite map_length.
repeat rewrite rev_length. rewrite skipn_length; lia. }
rewrite <- Hlen.
eapply ty_expr_env_ok_subst_env with (k := 0).
assert (Hcomb : exprs (rev (combine (pVars v2.1) (skipn (ind_npars mib) l2))) = l_comb).
{ subst. repeat rewrite map_rev. rewrite combine_rev.
apply f_equal. now rewrite map_combine_snd_funprod.
rewrite map_length. rewrite skipn_length; lia. }
rewrite <- Hcomb. rewrite <- map_app.
eapply eval_ty_expr_env_ok; eauto with hints.
rewrite app_length.
replace (#|rev (combine (pVars v2.1) (skipn (ind_npars mib) l2))|) with #|pVars v2.1| by
(rewrite rev_length, combine_length, skipn_length; lia).
replace #|ρ| with #|exprs ρ| by apply map_length. eauto with hints.
eapply closed_exprs; eauto.
eapply All_snd_combine with (p := iclosed_n 0); eauto with hints.
apply All_map. apply All_rev.
eapply All_expr_iclosed_of_val; eauto using All_skipn.
rewrite combine_length. rewrite map_length.
repeat rewrite rev_length. rewrite skipn_length by lia.
replace (min #|pVars v2.1| (#|l2| - ind_npars mib)) with #|pVars v2.1| by lia.
eauto with hints.
** rewrite <- combine_rev by auto.
rewrite map_combine_snd_funprod.
remember ((combine (rev (pVars v2.1)) (map of_val_i (rev (skipn _ l2))))) as l_comb.
assert (Hlen : #|l_comb| = #|pVars v2.1|).
{ subst. rewrite combine_length. rewrite map_length.
repeat rewrite rev_length. rewrite skipn_length; lia. }
rewrite <- Hlen.
eapply ty_expr_env_ok_subst_env with (k := 0).
remember (ind_npars mib) as nparams.
assert (Hcomb : exprs (rev (combine (pVars v2.1) (skipn nparams l2))) = l_comb).
{ subst. repeat rewrite map_rev. rewrite combine_rev.
apply f_equal. now rewrite map_combine_snd_funprod.
rewrite map_length. rewrite skipn_length; lia. }
rewrite <- Hcomb. rewrite <- map_app.
subst nparams. eapply eval_ty_expr_env_ok; eauto with hints.
rewrite app_length.
replace (#|rev (combine (pVars v2.1) (skipn _ l2))|) with #|pVars v2.1| by
(rewrite rev_length, combine_length, skipn_length; lia).
replace #|ρ| with #|exprs ρ| by apply map_length. eauto with hints.
eapply closed_exprs; eauto.
** rewrite map_length.
replace (#|rev (combine (pVars v2.1) (skipn _ l2))|) with #|pVars v2.1| by
(rewrite rev_length, combine_length, skipn_length; lia).
eauto with hints.
** apply All_map. subst.
apply All_rev. unfold compose. simpl.
apply All_snd_combine with (p := (iclosed_n 0) ∘ of_val_i).
unfold compose.
eapply All_expr_iclosed_of_val; try apply All_skipn; eauto.
+ (* eFix *)
simpl in *.
destruct (valid_env _ _ _); tryfalse.
destruct (eval_type_i 0 ρ t) eqn:Ht0; tryfalse.
destruct (eval_type_i 0 ρ t0) eqn:Ht1; tryfalse.
cbn in *. inversion He.
subst; simpl. repeat erewrite eval_type_i_subst_env by eauto.
repeat rewrite subst_env_i_ty_closed_eq by eauto 8 with hints.
constructor; auto.
+ (* eTy *)
simpl in *.
destruct (eval_type_i 0 ρ t) eqn:Ht0; tryfalse; simpl in *.
inversion He; subst; clear He. simpl.
erewrite eval_type_i_subst_env by eauto.
eapply Wcvb_type_to_term_eval; eauto with hints.
eapply closed_exprs; eauto.
Qed.
(** ** Soundness for closed expressions (In the paper: Corollary 2)*)
Corollary expr_to_term_sound_closed (n : nat) Σ1 Σ2
(e : expr) (v : val) :
Σ1 ⋈ Σ2 ->
genv_ok Σ1 ->
iclosed_n 0 e = true ->
eval(n, Σ1, [], e) = Ok v ->
Σ2 |- t⟦e⟧Σ1 ⇓ t⟦of_val_i v⟧Σ1.
Proof.
intros.
eapply expr_to_term_sound; eauto with hints.
simpl. symmetry. eapply subst_env_i_empty.
Qed.
Definition terminates_expr Σ1 (e : expr) : Prop :=
exists n v, eval(n, Σ1, [], e) = Ok v.
(** ** Adequacy for terminating programs (In the paper: Theorem 3) *)
Theorem adequacy_terminating Σ1 Σ2
(e : expr) (t : term) :
Σ1 ⋈ Σ2 ->
genv_ok Σ1 ->
terminates_expr Σ1 e ->
iclosed_n 0 e = true ->
Σ2 |- t⟦e⟧Σ1 ⇓ t ->
exists v, t = t⟦of_val_i v⟧Σ1.
Proof.
intros Hsync Hgok Hterm Hcvb Hclosed.
destruct Hterm as (n & v &?).
assert (Hcbv1 : Σ2 |- t⟦ e ⟧Σ1 ⇓ t⟦ of_val_i v ⟧ Σ1)
by (eapply expr_to_term_sound_closed; eauto).
exists v. eapply PcbvCurr.eval_deterministic; eauto.
Qed.