You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
@madhawav
What is the result of checking Google Colab notebook?
In Google Colab notebook I checked the following way, but without success.
python==3.7.13 torch==1.7.1+cu110 torchvision==0.8.2+cu110
--> Failed building wheel for torch-scatter, torch-sparse, but Successfully built torch-geometric
--> I can't proceed any further.
python==3.6.9 torch==1.8.0+cu111 torchvision==0.9.0+cu111
--> Successfully installed torch-scatter-2.0.9,Successfully installed torch-sparse-0.6.13,Successfully installed torch-geometric-2.0.4
--> Fail to import torch_sparse,torch_geometric
--> I can't proceed any further.
python==3.7.13 torch==1.11.0+cu113 torchvision==0.12.0+cu113
-->Successfully installed torch-scatter,torch_geometric,torch_sparse
-->No module named 'torchvision.models.utils' in /plan2scene/code/src/plan2scene/texture_gen/nets/vgg.py. I got this error and fixed it with torch.hub because 'torchvision.models.utils' is deprecated in torch 1.11.0.
--> When data is uploaded in"Task:Upload rectified surface crops extracted from photos." step, the photo_file_name directory is created under rectified_crops and copied. After moving the data to rectified_crops, you can see the texture in the step of "Task: Let's preview the data you have provided."
--> "# Compute texture embeddings for observed surfaces (Code adapted from ./code/scripts/preprocessing/fill_room_embeddigs.py)" step have error below like.
--> I can't proceed any further.
/usr/local/lib/python3.7/dist-packages/torch/functional.py:568: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2228.)
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
[<ipython-input-31-42fcee0d7001>](https://localhost:8080/#) in <module>()
4 for candidate_key, image_description in room.surface_textures[surface].items():
5 image = image_description.image
----> 6 emb, loss = tg_predictor.predict_embs([image])
7 room.surface_embeddings[surface][candidate_key] = emb
8 room.surface_losses[surface][candidate_key] = loss
10 frames
[/content/plan2scene/code/src/plan2scene/texture_gen/predictor.py](https://localhost:8080/#) in predict_embs(self, sample_image_crops)
81 predictor_result = self.predict(unsigned_images.to(self.conf.device),
82 unsigned_hsv_images.to(self.conf.device),
---> 83 self.get_position(), combined_emb=None, train=False)
84
85 # Compute loss between synthesized texture and conditioned image
[/content/plan2scene/code/src/plan2scene/texture_gen/predictor.py](https://localhost:8080/#) in predict(self, unsigned_images, unsigned_hsv_images, sample_pos, train, combined_emb)
272 network_input, base_color = self._compute_network_input(unsigned_images, unsigned_hsv_images, additional_params)
273 network_out, network_emb, substance_out = self.net(network_input, sample_pos.to(self.conf.device),
--> 274 self.seed)
275 else:
276 # Predict using the combined_emb. Skip encoder.
[/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py](https://localhost:8080/#) in _call_impl(self, *input, **kwargs)
1108 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1109 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1110 return forward_call(*input, **kwargs)
1111 # Do not call functions when jit is used
1112 full_backward_hooks, non_full_backward_hooks = [], []
[/content/plan2scene/code/src/plan2scene/texture_gen/nets/neural_texture/texture_gen.py](https://localhost:8080/#) in forward(self, image_gt, position, seed, weights_bottleneck)
87
88 input_mlp = torch.cat([z_encoding, noise], dim=1)
---> 89 image_out = self.decoder(input_mlp)
90 image_out = torch.tanh(image_out)
91
[/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py](https://localhost:8080/#) in _call_impl(self, *input, **kwargs)
1108 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1109 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1110 return forward_call(*input, **kwargs)
1111 # Do not call functions when jit is used
1112 full_backward_hooks, non_full_backward_hooks = [], []
[/content/plan2scene/code/src/plan2scene/texture_gen/nets/neural_texture/mlp.py](https://localhost:8080/#) in forward(self, input)
32 def forward(self, input):
33
---> 34 input_z = self.first_conv(input)
35 output = input_z
36 for idx, block in enumerate(self.res_blocks):
[/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py](https://localhost:8080/#) in _call_impl(self, *input, **kwargs)
1108 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1109 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1110 return forward_call(*input, **kwargs)
1111 # Do not call functions when jit is used
1112 full_backward_hooks, non_full_backward_hooks = [], []
[/content/plan2scene/code/src/plan2scene/texture_gen/nets/core_modules/standard_block.py](https://localhost:8080/#) in forward(self, input, style)
67 output = self.norm(output, style)
68 else:
---> 69 output = self.layer(input)
70
71 # output = self.norm(output)
[/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py](https://localhost:8080/#) in _call_impl(self, *input, **kwargs)
1108 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1109 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1110 return forward_call(*input, **kwargs)
1111 # Do not call functions when jit is used
1112 full_backward_hooks, non_full_backward_hooks = [], []
[/usr/local/lib/python3.7/dist-packages/torch/nn/modules/conv.py](https://localhost:8080/#) in forward(self, input)
445
446 def forward(self, input: Tensor) -> Tensor:
--> 447 return self._conv_forward(input, self.weight, self.bias)
448
449 class Conv3d(_ConvNd):
[/usr/local/lib/python3.7/dist-packages/torch/nn/modules/conv.py](https://localhost:8080/#) in _conv_forward(self, input, weight, bias)
442 _pair(0), self.dilation, self.groups)
443 return F.conv2d(input, weight, bias, self.stride,
--> 444 self.padding, self.dilation, self.groups)
445
446 def forward(self, input: Tensor) -> Tensor:
TypeError: conv2d() received an invalid combination of arguments - got (Tensor, Parameter, Parameter, tuple, tuple, tuple, int), but expected one of:
* (Tensor input, Tensor weight, Tensor bias, tuple of ints stride, tuple of ints padding, tuple of ints dilation, int groups)
didn't match because some of the arguments have invalid types: (Tensor, !Parameter!, !Parameter!, !tuple!, !tuple!, !tuple!, int)
* (Tensor input, Tensor weight, Tensor bias, tuple of ints stride, str padding, tuple of ints dilation, int groups)
didn't match because some of the arguments have invalid types: (Tensor, !Parameter!, !Parameter!, !tuple!, !tuple!, !tuple!, int)
@madhawav
What is the result of checking Google Colab notebook?
In Google Colab notebook I checked the following way, but without success.
python==3.7.13 torch==1.7.1+cu110 torchvision==0.8.2+cu110
--> Failed building wheel for torch-scatter, torch-sparse, but Successfully built torch-geometric
--> I can't proceed any further.
python==3.6.9 torch==1.8.0+cu111 torchvision==0.9.0+cu111
--> Successfully installed torch-scatter-2.0.9,Successfully installed torch-sparse-0.6.13,Successfully installed torch-geometric-2.0.4
--> Fail to import torch_sparse,torch_geometric
--> I can't proceed any further.
python==3.7.13 torch==1.11.0+cu113 torchvision==0.12.0+cu113
-->Successfully installed torch-scatter,torch_geometric,torch_sparse
-->No module named 'torchvision.models.utils' in /plan2scene/code/src/plan2scene/texture_gen/nets/vgg.py. I got this error and fixed it with torch.hub because 'torchvision.models.utils' is deprecated in torch 1.11.0.
--> When data is uploaded in"Task:Upload rectified surface crops extracted from photos." step, the photo_file_name directory is created under rectified_crops and copied. After moving the data to rectified_crops, you can see the texture in the step of "Task: Let's preview the data you have provided."
--> "# Compute texture embeddings for observed surfaces (Code adapted from ./code/scripts/preprocessing/fill_room_embeddigs.py)" step have error below like.
--> I can't proceed any further.
Could you recheck colab notebook?
Originally posted by @charlescho64 in #28 (comment)
The text was updated successfully, but these errors were encountered: