-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresnest18.py
288 lines (258 loc) · 11.1 KB
/
resnest18.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
# -*- coding: utf-8 -*-
'''
@LastEditor : anchao
@LastEditorEmail : [email protected]
@LastEditTime : 2020-11-20 05:04:13
@Description : Resnest backbone.
'''
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Conv2d, Module, Linear, BatchNorm2d, ReLU
from torch.nn.modules.utils import _pair
from modeling.registry import BACKBONES
class SplAtConv2d(Module):
"""Split-Attention Conv2d
"""
def __init__(self, in_channels, channels, kernel_size, stride=(1, 1), padding=(0, 0),
dilation=(1, 1), groups=1, bias=True,
radix=2, reduction_factor=4,
norm_layer=nn.BatchNorm2d,
**kwargs):
'''
split attention block consist of feature map group and split attention operations.
groups: input channel devide to group, as cardinality, use group conv is for reduce params.
radix: after input split into groups, every group will aslo be split radix number group again,
so all groups is equal group*radix
reduction_factor: to reduce params in attention operations.
'''
super(SplAtConv2d, self).__init__()
padding = _pair(padding)
inter_channels = max(in_channels*radix//reduction_factor, 32)
self.radix = radix
self.cardinality = groups
self.channels = channels
self.conv = Conv2d(in_channels, channels*radix, kernel_size, stride, padding, dilation,
groups=groups*radix, bias=bias, **kwargs)
self.bn0 = norm_layer(channels*radix)
self.relu = ReLU(inplace=True)
self.fc1 = Conv2d(channels, inter_channels, 1, groups=self.cardinality)
self.bn1 = norm_layer(inter_channels)
self.fc2 = Conv2d(inter_channels, channels*radix, 1, groups=self.cardinality)
self.rsoftmax = rSoftMax(radix, groups)
def forward(self, x):
x = self.conv(x)
x = self.bn0(x)
x = self.relu(x)
batch, rchannel = x.shape[:2]
if self.radix > 1:
splited = torch.split(x, rchannel//self.radix, dim=1) #split into radix number groups
gap = sum(splited)
else:
gap = x
gap = F.adaptive_avg_pool2d(gap, 1)
gap = self.fc1(gap)
gap = self.bn1(gap)
gap = self.relu(gap)
atten = self.fc2(gap)
atten = self.rsoftmax(atten).view(batch, -1, 1, 1)
if self.radix > 1:
attens = torch.split(atten, rchannel//self.radix, dim=1)
out = sum([att*split for (att, split) in zip(attens, splited)])
else:
out = atten * x
return out.contiguous()
class rSoftMax(nn.Module):
def __init__(self, radix, cardinality):
super().__init__()
self.radix = radix
self.cardinality = cardinality
def forward(self, x):
batch = x.size(0)
if self.radix > 1:
x = x.view(batch, self.cardinality, self.radix, -1).transpose(1, 2)
x = F.softmax(x, dim=1)
x = x.reshape(batch, -1)
else:
x = torch.sigmoid(x)
return x
class Bottleneck(nn.Module):
"""ResNet Bottleneck
"""
# pylint: disable=unused-argument
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None,
radix=1, cardinality=1, bottleneck_width=64,
avd=False, avd_first=False, dilation=1, is_first=False,
norm_layer=None):
super(Bottleneck, self).__init__()
group_width = int(planes * (bottleneck_width / 64.)) * cardinality
self.conv1 = nn.Conv2d(inplanes, group_width, kernel_size=1, bias=False)
self.bn1 = norm_layer(group_width)
self.radix = radix
self.avd = avd and (stride > 1 or is_first)
self.avd_first = avd_first
if self.avd:
self.avd_layer = nn.AvgPool2d(3, stride, padding=1)
stride = 1
if radix >= 1:
self.conv2 = SplAtConv2d(
group_width, group_width, kernel_size=3,
stride=stride, padding=dilation,
dilation=dilation, groups=cardinality, bias=False,
radix=radix,norm_layer=norm_layer)
else:
self.conv2 = nn.Conv2d(
group_width, group_width, kernel_size=3, stride=stride,
padding=dilation, dilation=dilation,
groups=cardinality, bias=False)
self.bn2 = norm_layer(group_width)
self.conv3 = nn.Conv2d(
group_width, planes, kernel_size=1, bias=False)
self.bn3 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.dilation = dilation
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
if self.avd and self.avd_first:
out = self.avd_layer(out)
out = self.conv2(out)
if self.avd and not self.avd_first:
out = self.avd_layer(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
"""ResNet Variants
"""
# pylint: disable=unused-variable
def __init__(self, block, layers, cfg, radix=1, groups=1, bottleneck_width=64,
num_classes=1000, dilation=1,
deep_stem=False, stem_width=64, avg_down=False,
avd=False, avd_first=False,
final_drop=0.0,
norm_layer=nn.BatchNorm2d):
self.cfg = cfg
self.cardinality = groups
self.bottleneck_width = bottleneck_width
# ResNet-D params
self.inplanes = stem_width*2 if deep_stem else 64
self.avg_down = avg_down
# ResNeSt params
self.radix = radix
self.avd = avd
self.avd_first = avd_first
super(ResNet, self).__init__()
conv_layer = nn.Conv2d
conv_kwargs = {}
if deep_stem:
self.conv1 = nn.Sequential(
conv_layer(3, stem_width, kernel_size=3, stride=2, padding=1, bias=False, **conv_kwargs),
norm_layer(stem_width),
nn.ReLU(inplace=True),
conv_layer(stem_width, stem_width, kernel_size=3, stride=1, padding=1, bias=False, **conv_kwargs),
norm_layer(stem_width),
nn.ReLU(inplace=True),
conv_layer(stem_width, stem_width*2, kernel_size=3, stride=1, padding=1, bias=False, **conv_kwargs),
)
else:
self.conv1 = conv_layer(3, 64, kernel_size=7, stride=2, padding=3,
bias=False, **conv_kwargs)
self.bn1 = norm_layer(self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0], norm_layer=norm_layer, is_first=False)
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, norm_layer=norm_layer)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2,norm_layer=norm_layer)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2,norm_layer=norm_layer)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, norm_layer):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1, dilation=1, norm_layer=None,
is_first=True, up_channel_dim=True):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
down_layers = []
if self.avg_down:
if dilation == 1:
down_layers.append(nn.AvgPool2d(kernel_size=stride, stride=stride,
ceil_mode=True, count_include_pad=False))
down_layers.append(nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=1, bias=False))
else:
down_layers.append(nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False))
down_layers.append(norm_layer(planes * block.expansion))
downsample = nn.Sequential(*down_layers)
layers = []
if dilation == 1 or dilation == 2:
layers.append(block(self.inplanes, planes, stride, downsample=downsample,
radix=self.radix, cardinality=self.cardinality,
bottleneck_width=self.bottleneck_width,
avd=self.avd, avd_first=self.avd_first,
dilation=1, is_first=is_first,
norm_layer=norm_layer))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes,
radix=self.radix, cardinality=self.cardinality,
bottleneck_width=self.bottleneck_width,
avd=self.avd, avd_first=self.avd_first,
dilation=dilation,
norm_layer=norm_layer))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
stage4 = self.layer1(x)
stage8 = self.layer2(stage4)
stage16 = self.layer3(stage8)
stage32 = self.layer4(stage16)
out = [stage8, stage16, stage32]
return out[0:]
def load_param(self, model_path):
param_dict = torch.load(model_path,map_location='cpu')
for i in param_dict["state_dict"]:
print(i)
map_i = i.replace('module.', '')
if 'fc' in i or 'classifier' in i:
continue
self.state_dict()[map_i].copy_(param_dict["state_dict"][i])
class ResNest18(ResNet):
'''
resnest18
return 8 16 32 downsample features.
'''
def __init__(self, cfg):
super().__init__(Bottleneck, [2, 2, 2, 2], cfg,radix=2,
groups=1, bottleneck_width=64,deep_stem=True,
stem_width=32, avg_down=True,
avd=True, avd_first=False
)
self.return_features_num_channels = [128, 256, 512]
if __name__ == "__main__":
import time
test_input = torch.randn((2, 3, 960, 544)).cuda()
model = ResNest18(None).cuda()
model.load_param("/workspace/mnt/storage/anchao/ac_file/ATSSV2_traffic/SupreVision/checkpoints/resnest_model.pth.tar")
start = time.time()
out = model(test_input)
end = time.time()
print("cost time:",end-start)
print(out[0].shape)