-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPre-Search-test.py
648 lines (465 loc) · 18.7 KB
/
Pre-Search-test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
#!/usr/bin/python
import math
import time
import cv2
import Queue
import sc_config
import pid
from sc_video import sc_video
from sc_dispatcher import sc_dispatcher
from sc_logger import sc_logger
from pl_gui import PrecisionLandGUI as gui
from pl_sim import sim
from pl_util import shift_to_origin, current_milli_time
from CircleDetector import CircleDetector
from vehicle_control import veh_control
from droneapi.lib import VehicleMode, Location, Attitude
from position_vector import PositionVector
from balloon_video import balloon_video
'''
Logic:
TODO
'''
'''
Temporary Changes:
-added kill_camera(commented out)
'''
'''
TODO:
Future:
-have program takeover during landing modes(not guided)
-send warning message to GCS when releasing control
-implement a landing detector and when to release control
Bugs:
-add logic for when the vehicle enters from the side of the landing cylinder and underneath the abort point
-will cause the vehicle to climb the second it enters the area is the target is not in sight
-will fix this when the vehicle accepts commands in landing modes
-will add an intial_approach() method
-make logic more accepting of land and RTL
-add positive and negative check on parameters
-inverted on Z axis
Improvements:
-add varaible descent_rate based on distance to target center and altitude
-add better target_detected logic(multiple frames required for a lock)
-add update rate to sc_logger
-fix project file structure
-fix Logging printing to console
-handle droneapi start up better(location being null at start up-> issue using see inside_landing_area() RIGHT at startup)
-bring back inside_landing_area() as a condition for enterting the main loop
'''
class PrecisionLand(object):
def __init__(self):
#load config file
sc_config.config.get_file('Smart_Camera')
#get camera specs
self.camera_index = sc_config.config.get_integer('camera','camera_index',0)
self.camera_width = sc_config.config.get_integer('camera', 'camera_width', 640)
self.camera_height = sc_config.config.get_integer('camera', 'camera_height', 480)
self.camera_hfov = sc_config.config.get_float('camera', 'horizontal-fov', 72.42)
self.camera_vfov = sc_config.config.get_float('camera', 'vertical-fov', 43.3)
#use simulator
#self.simulator = sc_config.config.get_boolean('simulator','use_simulator',True)
self.simulator = sc_config.config.get_boolean('simulator','use_simulator',False)
#how many times to attempt a land before giving up
self.search_attempts = sc_config.config.get_integer('general','search_attempts', 5)
#The timeout between losing the target and starting a climb/scan
self.settle_time = sc_config.config.get_integer('general','settle_time', 1.5)
#how high to climb in meters to complete a scan routine
self.climb_altitude = sc_config.config.get_integer('general','climb_altitude', 20)
#the max horizontal speed sent to autopilot
self.vel_speed_max = sc_config.config.get_float('general', 'vel_speed_max', 5)
#P term of the horizontal distance to velocity controller
#Pid P canshu 0.15
self.dist_to_vel = sc_config.config.get_float('general', 'dist_to_vel', 0.15)
#Descent velocity
self.descent_rate = sc_config.config.get_float('general','descent_rate', 0.5)
#roll/pitch value that is considered stable
self.stable_attitude = sc_config.config.get_float('general', 'stable_attitude', 0.18)
#Climb rate when executing a search
self.climb_rate = sc_config.config.get_float('general','climb_rate', -0.5)
#The height at a climb is started if no target is detected
self.abort_height = sc_config.config.get_integer('general', 'abort_height', 10)
#when we have lock on target, only descend if within this radius
self.descent_radius = sc_config.config.get_float('general', 'descent_radius', 2.0)
#The height at which we lock the position on xy axis
self.landing_area_min_alt = sc_config.config.get_integer('general', 'landing_area_min_alt', 1.5)
#The radius of the cylinder surrounding the landing pad
self.landing_area_radius = sc_config.config.get_integer('general', 'landing_area_radius', 20)
#Whether the landing program can be reset after it is disabled
self.allow_reset = sc_config.config.get_boolean('general', 'allow_reset', True)
#Run the program no matter what mode or location; Useful for debug purposes
self.always_run = sc_config.config.get_boolean('general', 'always_run', True)
#whether the companion computer has control of the autopilot or not
self.in_control = False
#how many frames have been captured
self.frame_count = 0
self.last_time = 0
self.cur_time = 0
#flag if see tarf=get
self.flag = False
# horizontal velocity pid controller. maximum effect is 10 degree lean
xy_p = sc_config.config.get_float('general','VEL_XY_P',10.0)
xy_i = sc_config.config.get_float('general','VEL_XY_I',0.0)
xy_d = sc_config.config.get_float('general','VEL_XY_D',2.0)
xy_imax = sc_config.config.get_float('general','VEL_XY_IMAX',10.0)
self.vel_xy_pid = pid.pid(xy_p, xy_i, xy_d, math.radians(xy_imax))
#Reset state machine
self.initialize_landing()
#debugging:
self.kill_camera = False
def name(self):
return "Precision_Land"
def connect(self):
while(veh_control.is_connected() == False):
# connect to droneapi
veh_control.connect(local_connect())
self.vehicle = veh_control.get_vehicle()
def run(self):
sc_logger.text(sc_logger.GENERAL, 'running {0}'.format(self.name()))
#start a video capture
if(self.simulator):
sc_logger.text(sc_logger.GENERAL, 'Using simulator')
#-35.362664, 149.166803 -35.362902 149.166249
sim.set_target_location(Location(-35.362902, 149.166249,0))
#sim.set_target_location(Location(0,0,0))
else:
sc_video.start_capture(self.camera_index)
#camera = balloon_video.get_camera()
video_writer = balloon_video.open_video_writer()
#create an image processor
detector = CircleDetector()
#create a queue for images
imageQueue = Queue.Queue()
#create a queue for vehicle info
vehicleQueue = Queue.Queue()
while veh_control.is_connected():
'''
#kill camera for testing
if(cv2.waitKey(2) == 1113938):
self.kill_camera = not self.kill_camera
'''
#Reintialize the landing program when entering a landing mode
if veh_control.controlling_vehicle():
if not self.in_control:
if(self.allow_reset):
sc_logger.text(sc_logger.GENERAL, 'Program initialized to start state')
self.initialize_landing()
self.in_control = True
else:
self.in_control = False
# seach
if(self.flag==False):
print "Going to first point..."
#30.264233, 120.118813 -35.362664, 149.166803
point1 = Location(30.264233, 120.118813, 4, is_relative=True)
self.vehicle.commands.goto(point1)
self.vehicle.flush()
#we are in the landing zone or in a landing mode and we are still running the landing program
#just because the program is running does not mean it controls the vehicle
#i.e. in the landing area but not in a landing mode
#FIXME add inside_landing_area() back to conditional
if (self.in_control or self.always_run) and self.pl_enabled:
#update how often we dispatch a command
sc_dispatcher.calculate_dispatch_schedule()
#get info from autopilot
location = veh_control.get_location()
attitude = veh_control.get_attitude()
#update simulator
if(self.simulator):
sim.refresh_simulator(location,attitude)
# grab an image
capStart = current_milli_time()
frame = self.get_frame()
capStop = current_milli_time()
# write the frame
video_writer.write(frame)
#update capture time
sc_dispatcher.update_capture_time(capStop-capStart)
#Process image
#We schedule the process as opposed to waiting for an available core
#This brings consistancy and prevents overwriting a dead process before
#information has been grabbed from the Pipe
if sc_dispatcher.is_ready():
#queue the image for later use: displaying image, overlays, recording
imageQueue.put(frame)
#queue vehicle info for later use: position processing
vehicleQueue.put((location,attitude))
#the function must be run directly from the class
sc_dispatcher.dispatch(target=detector.analyze_frame, args=(frame,attitude,))
#retreive results
if sc_dispatcher.is_available():
sc_logger.text(sc_logger.GENERAL, 'Frame {0}'.format(self.frame_count))
self.frame_count += 1
#results of image processor
results = sc_dispatcher.retreive()
# get image that was passed with the image processor
img = imageQueue.get()
#get vehicle position that was passed with the image processor
location, attitude = vehicleQueue.get()
#overlay gui
rend_Image = gui.add_target_highlights(img, results[3])
#show/record images
sc_logger.image(sc_logger.RAW, img)
sc_logger.image(sc_logger.GUI, rend_Image)
#display/log data
sc_logger.text(sc_logger.ALGORITHM,'RunTime: {0} Center: {1} Distance: {2} Raw Target: {3}'.format(results[0],results[1],results[2],results[3]))
sc_logger.text(sc_logger.AIRCRAFT,attitude)
sc_logger.text(sc_logger.AIRCRAFT,location)
#send commands to autopilot
if(results[2]!=-1):
self.flag = True
if(self.flag==True):
self.control(results,attitude,location)
else:
if(self.pl_enabled == False):
sc_logger.text(sc_logger.GENERAL, 'Landing disabled')
else:
sc_logger.text(sc_logger.GENERAL, 'Not in landing mode or Landing Area')
#terminate program
sc_logger.text(sc_logger.GENERAL, 'Vehicle disconnected, Program Terminated')
if(self.simulator == False):
sc_video.stop_capture()
#initialize_landing - reset the state machine which controls the flow of the landing routine
def initialize_landing(self):
#how mant times we have attempted landing
self.attempts = 0
#Last time in millis since we had a valid target
self.last_valid_target = 0
#State variable climbing to scan for the target
self.climbing = False
#State variable which determines if this program will continue to run
self.pl_enabled = True
#State variable used to represent if autopilot is active
self.initial_descent = True
#State variable which represents a know target in landing area
self.target_detected = False
#control - how to respond to information captured from camera
def control(self,target_info,attitude,location):
#we have control from autopilot
if self.in_control:
valid_target = False
#now=0;
#print (time.time()-now);
now = time.time()
#print now;
#detected a target
if target_info[1] is not None:
self.target_detected = True
valid_target = True
initial_descent = False
self.last_valid_target = now
#attempt to use precision landing
if(self.inside_landing_area() == 1):
#we have detected a target in landing area
if(self.target_detected):
self.climbing = False
self.initial_descent = False
#we currently see target
if(valid_target):
sc_logger.text(sc_logger.GENERAL, 'Target detected. Moving to target')
##add myself
if(veh_control.get_location().alt < 1):
self.autopilot_land()
sc_logger.text(sc_logger.GENERAL, 'Landing!!!!!!!!')
#move to target
else:
self.move_to_target(target_info,attitude,location)
#lost target
else:
#we have lost the target for more than settle_time
if(now - self.last_valid_target > self.settle_time):
self.target_detected = False
#temporarily lost target,
#top section of cylinder
if(veh_control.get_location().alt > self.abort_height):
sc_logger.text(sc_logger.GENERAL, 'Lost Target: Straight Descent')
#continue descent
self.straight_descent()
else:
sc_logger.text(sc_logger.GENERAL, 'Lost Target: Holding')
#neutralize velocity
veh_control.set_velocity(0,0,0)
#there is no known target in landing area
else:
#currently searching
if(self.climbing):
self.climb()
#not searching, decide next move
else:
#top section of cylinder
if(veh_control.get_location().alt > self.abort_height):
#initial descent entering cylinder
if(self.initial_descent):
sc_logger.text(sc_logger.GENERAL, 'No Target: Initial Descent')
#give autopilot control
self.autopilot_land()
#all other attempts prior to intial target detection
else:
sc_logger.text(sc_logger.GENERAL, 'No target: Straight descent')
#straight descent
self.straight_descent()
#lower section of cylinder
else:
#we can attempt another land
if(self.attempts < self.search_attempts):
self.attempts += 1
sc_logger.text(sc_logger.GENERAL, 'Climbing to attempt {0}'.format(self.attempts))
#start climbing
self.climb()
#give up and
else:
sc_logger.text(sc_logger.GENERAL, 'Out of attempts: Giving up')
#give autopilot control
self.autopilot_land()
#final descent
elif(self.inside_landing_area() == -1):
sc_logger.text(sc_logger.GENERAL, 'In final descent')
#straight descent
#change LAND mode
#self.straight_descent()
self.vehicle.mode = VehicleMode("LAND")
self.vehicle.flush()
self.target_detected = False
#outside cylinder
else:
sc_logger.text(sc_logger.GENERAL, 'Outside landing zone')
#give autopilot control
self.autopilot_land()
self.target_detected = False
self.initial_descent = True
#the program is running but the autopilot is in an invalid mode
else:
sc_logger.text(sc_logger.GENERAL, 'Not in control of vehicle')
#release_control - give the autopilot full control and leave it in a stable state
def release_control(self):
sc_logger.text(sc_logger.GENERAL, 'Releasing control')
#put vehicle in stable state
veh_control.set_velocity(0,0,0)
#autopilot_land()
#dont let us take control ever again
self.pl_enabled = False
'''
# if in GUIDED mode switch back to LOITER
if self.vehicle.mode.name == "GUIDED":
self.vehicle.mode = VehicleMode("LOITER")
self.vehicle.flush()
'''
#move_to_target - fly aircraft to landing pad
def move_to_target(self,target_info,attitude,location):
x,y = target_info[1]
#shift origin to center of image
x,y = shift_to_origin((x,y),self.camera_width,self.camera_height)
#this is necessary because the simulator is 100% accurate
if(self.simulator):
hfov = 48.7
vfov = 49.7
else:
hfov = self.camera_hfov
vfov = self.camera_vfov
#stabilize image with vehicle attitude
x -= (self.camera_width / hfov) * math.degrees(attitude.roll)
y += (self.camera_height / vfov) * math.degrees(attitude.pitch)
#convert to distance
X, Y, Xp, Yp = self.pixel_point_to_position_xy((x,y),location.alt)
#convert to world coordinates
target_heading = math.atan2(Yp,Xp) % (2*math.pi)
target_heading = (attitude.yaw - target_heading)
target_distance = math.sqrt(X**2 + Y**2)
sc_logger.text(sc_logger.GENERAL, "Distance to target: {0}".format(round(target_distance,2)))
#calculate speed toward target
speed = target_distance * self.dist_to_vel
#apply max speed limit
speed = min(speed,self.vel_speed_max)
#calculate cartisian speed
vx = speed * math.sin(target_heading) * -1.0
vy = speed * math.cos(target_heading)
#only descend when on top of target
if(target_distance > self.descent_radius):
vz = 0
else:
vz = self.descent_rate
#send velocity commands toward target heading
veh_control.set_velocity(vx,vy,vz)
#autopilot_land - Let the autopilot execute its normal landing procedure
def autopilot_land(self):
#descend velocity
veh_control.set_velocity(0,0,self.descent_rate)
#veh_control.set_velocity(9999,9999,9999)
#straight_descent - send the vehicle straight down
def straight_descent(self):
veh_control.set_velocity(0,0,self.descent_rate)
#climb - climb to a certain alitude then stop.
def climb(self):
if(veh_control.get_location().alt < self.climb_altitude):
sc_logger.text(sc_logger.GENERAL, 'climbing')
veh_control.set_velocity(0,0,self.climb_rate)
self.climbing = True
else:
sc_logger.text(sc_logger.GENERAL, 'Reached top of search zone')
veh_control.set_velocity(0,0,0)
self.climbing = False
#inside_landing_area - determine is we are in a landing zone 0 = False, 1 = True, -1 = below the zone
'''
def inside_landing_area(self):
return 1
vehPos = PositionVector.get_from_location(veh_control.get_location())
landPos = PositionVector.get_from_location(veh_control.get_landing())
vehPos = PositionVector.get_from_location(Location(0,0,10))
landPos = PositionVector.get_from_location(Location(0,0,0))
if(PositionVector.get_distance_xy(vehPos,landPos) < self.landing_area_radius):
#below area
if(vehPos.z < self.landing_area_min_alt):
return -1
#in area
else:
return 1
#outside area
else:
return 0
'''
#inside_landing_area - determine is we are in a landing zone 0 = False, 1 = True, -1 = below the zone
def inside_landing_area(self):
vehPos = PositionVector.get_from_location(veh_control.get_location())
#below area
if(vehPos.z < self.landing_area_min_alt):
return -1
#in area
else:
return 1
#get_frame - pull an image from camera or simulator
def get_frame(self):
if(self.simulator):
return sim.get_frame()
else:
return sc_video.get_image()
#pixel_point_to_position_xy - convert position in pixels to position in meters
#pixel_position - distance in pixel from CENTER of image
#distance- distance from the camera to the object in meters
def pixel_point_to_position_xy(self,pixel_position,distance):
thetaX = pixel_position[0] * self.camera_hfov / self.camera_width
thetaY = pixel_position[1] * self.camera_vfov / self.camera_height
x = distance * math.tan(math.radians(thetaX))
y = distance * math.tan(math.radians(thetaY))
print x,y
print 1
# pid
# get time since last time velocity pid controller was run
dt = self.vel_xy_pid.get_dt(200.0)
# calculate thetaX correction and final X movement
thetaX_correction = self.vel_xy_pid.get_pid(thetaX, dt)
# calculate thetaX correction and final X movement
thetaY_correction = self.vel_xy_pid.get_pid(thetaY, dt)
xp = distance * math.tan(math.radians(thetaX_correction))
yp = distance * math.tan(math.radians(thetaY_correction))
print xp,yp
return (x,y,xp,yp)
# if starting from mavproxy
if __name__ == "__builtin__":
# start precision landing
strat = PrecisionLand()
# connect to droneapi
sc_logger.text(sc_logger.GENERAL, 'Connecting to vehicle...')
strat.connect()
sc_logger.text(sc_logger.GENERAL, 'Vehicle connected!')
# run strategy
strat.run()