-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathunet-pytorch.py
85 lines (80 loc) · 3.52 KB
/
unet-pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# -*- coding:utf-8 -*-
#pythorch
import torch.nn as nn
import torch
from torch import autograd
#https://github.com/JavisPeng/u_net_liver
#http://www.zhongruitech.com/244512251.html unet 医学ct影像检测博客 语义分割也用到 输入输出改变
#把常用的2个卷积操作简单封装下
class DoubleConv(nn.Module): #相当于bottenneck
def __init__(self, in_ch, out_ch):
super(DoubleConv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_ch, out_ch, 3, padding=1),
nn.BatchNorm2d(out_ch), #添加了BN层
nn.ReLU(inplace=True),
nn.Conv2d(out_ch, out_ch, 3, padding=1),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True)
)
def forward(self, input):
return self.conv(input)
# class torch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, #逆卷积,转置卷积,反卷积
# output_padding=0, groups=1, bias=True, dilation=1)
#output=(input-1)*stride+outputpadding-2*padding+kernelsize #反卷积后输出特征图大小的公式
# in_channels(int) – 输入信号的通道数
# out_channels(int) – 卷积产生的通道数
# kerner_size(int or tuple) - 卷积核的大小
# stride(int or tuple,optional) - 卷积步长,即要将输入扩大的倍数。
# padding(int or tuple, optional) - 输入的每一条边补充0的层数,高宽都增加2*padding
# output_padding(int or tuple, optional) - 输出边补充0的层数,高宽都增加padding
# groups(int, optional) – 从输入通道到输出通道的阻塞连接数
# bias(bool, optional) - 如果bias=True,添加偏置
# dilation(int or tuple, optional) – 卷积核元素之间的间距
class Unet(nn.Module):
def __init__(self, in_ch, out_ch):
super(Unet, self).__init__()
self.conv1 = DoubleConv(in_ch, 64)
self.pool1 = nn.MaxPool2d(2)
self.conv2 = DoubleConv(64, 128)
self.pool2 = nn.MaxPool2d(2)
self.conv3 = DoubleConv(128, 256)
self.pool3 = nn.MaxPool2d(2)
self.conv4 = DoubleConv(256, 512)
self.pool4 = nn.MaxPool2d(2)
self.conv5 = DoubleConv(512, 1024)
# 逆卷积,也可以使用上采样
self.up6 = nn.ConvTranspose2d(1024, 512, 2, stride=2) #ConvTranspose2d pytorch 自带
self.conv6 = DoubleConv(1024, 512)
self.up7 = nn.ConvTranspose2d(512, 256, 2, stride=2)
self.conv7 = DoubleConv(512, 256)
self.up8 = nn.ConvTranspose2d(256, 128, 2, stride=2)
self.conv8 = DoubleConv(256, 128)
self.up9 = nn.ConvTranspose2d(128, 64, 2, stride=2)
self.conv9 = DoubleConv(128, 64)
self.conv10 = nn.Conv2d(64, out_ch, 1)
def forward(self, x):
c1 = self.conv1(x)
p1 = self.pool1(c1)
c2 = self.conv2(p1)
p2 = self.pool2(c2)
c3 = self.conv3(p2)
p3 = self.pool3(c3)
c4 = self.conv4(p3)
p4 = self.pool4(c4)
c5 = self.conv5(p4)
up_6 = self.up6(c5)
merge6 = torch.cat([up_6, c4], dim=1)
c6 = self.conv6(merge6)
up_7 = self.up7(c6)
merge7 = torch.cat([up_7, c3], dim=1)
c7 = self.conv7(merge7)
up_8 = self.up8(c7)
merge8 = torch.cat([up_8, c2], dim=1)
c8 = self.conv8(merge8)
up_9 = self.up9(c8)
merge9 = torch.cat([up_9, c1], dim=1)
c9 = self.conv9(merge9)
c10 = self.conv10(c9)
out = nn.Sigmoid()(c10)
return out