-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathBiSeNet_fenge.py
118 lines (102 loc) · 4.87 KB
/
BiSeNet_fenge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
#https://blog.csdn.net/rainforestgreen/article/details/85157989
class ConvBlock(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=2,padding=1):
super().__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding)
self.bn = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU()
def forward(self, input):
x = self.conv1(input)
return self.relu(self.bn(x))
class Spatial_path(torch.nn.Module):
def __init__(self):
super().__init__()
self.convblock1 = ConvBlock(in_channels=3, out_channels=64)
self.convblock2 = ConvBlock(in_channels=64, out_channels=128)
self.convblock3 = ConvBlock(in_channels=128, out_channels=256)
def forward(self, input):
x = self.convblock1(input)
x = self.convblock2(x)
x = self.convblock3(x)
return x
class AttentionRefinementModule(torch.nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
self.bn = nn.BatchNorm2d(out_channels)
self.sigmoid = nn.Sigmoid()
self.in_channels = in_channels
def forward(self, input):
# global average pooling
x = torch.mean(input, 3, keepdim=True)
x = torch.mean(x, 2, keepdim=True)
assert self.in_channels == x.size(1), 'in_channels {} and out_channels {} should all be {}'.format(self.in_channels,x.size(1),x.size(1))
x = self.conv(x)
# x = self.sigmoid(self.bn(x))
x = self.sigmoid(x)
# channels of input and x should be same
x = torch.mul(input, x)
return x
class FeatureFusionModule(torch.nn.Module):
def __init__(self, num_classes,in_channels=1024):
super().__init__()
self.in_channels = in_channels
self.convblock = ConvBlock(in_channels=self.in_channels, out_channels=num_classes, stride=1)
self.conv1 = nn.Conv2d(num_classes, num_classes, kernel_size=1)
self.relu = nn.ReLU()
self.conv2 = nn.Conv2d(num_classes, num_classes, kernel_size=1)
self.sigmoid = nn.Sigmoid()
def forward(self, input_1, input_2):
x = torch.cat((input_1, input_2), dim=1)
assert self.in_channels == x.size(1), 'in_channels {} of ConvBlock should be {}'.format(self.in_channels,x.size(1))
feature = self.convblock(x)
x = torch.mean(feature, 3, keepdim=True)
x = torch.mean(x, 2 ,keepdim=True)
x = self.relu(self.conv1(x))
x = self.sigmoid(self.relu(x))
x = torch.mul(feature, x)
x = torch.add(x, feature)
return x
class BiSeNet(torch.nn.Module):
def __init__(self, num_classes, context_path):
super().__init__()
# build spatial path
self.saptial_path = Spatial_path()
# build context path
self.context_path = build_contextpath(name=context_path) #这里其实就是特征提取的基本网络,主要用到了res18和res101
# build attention refinement module
if context_path=='resnet18':
self.attention_refinement_module1 = AttentionRefinementModule(256, 256)
self.attention_refinement_module2 = AttentionRefinementModule(512, 512)
elif context_path=='resnet101':
self.attention_refinement_module1 = AttentionRefinementModule(1024, 1024)
self.attention_refinement_module2 = AttentionRefinementModule(2048, 2048)
else:
raise 'context_path error'
# build feature fusion module
if context_path=='resnet18':
self.feature_fusion_module = FeatureFusionModule(num_classes,1024) #此处源码没有实现,因此会有错误。我进行了分析和实现
elif context_path=='resnet101':
self.feature_fusion_module = FeatureFusionModule(num_classes,3328)
else:
raise 'context_path error'
# build final convolution
self.conv = nn.Conv2d(in_channels=num_classes, out_channels=num_classes, kernel_size=1)
def forward(self, input):
# output of spatial path
sx = self.saptial_path(input)
# output of context path
cx1, cx2, tail = self.context_path(input)
cx1 = self.attention_refinement_module1(cx1)
cx2 = self.attention_refinement_module2(cx2)
cx2 = torch.mul(cx2, tail)
# upsampling
cx1 = torch.nn.functional.interpolate(cx1, scale_factor=2, mode='bilinear')
cx2 = torch.nn.functional.interpolate(cx2, scale_factor=4, mode='bilinear')
cx = torch.cat((cx1, cx2), dim=1)
# output of feature fusion module
result = self.feature_fusion_module(sx, cx)
# upsampling
result = torch.nn.functional.interpolate(result, scale_factor=8, mode='bilinear')
result = self.conv(result)
return result