-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathContext.lp
239 lines (167 loc) · 7.91 KB
/
Context.lp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
/* Preliminary: alternative context-extension for dependent-types.
This file will compare a usual traditional context-extension
(categories with families, etc) versus a more general and clearer
direct computational (strictified via Lambdapi rewrite rules) implementation
as required for a proof assistant for categories/sheaves/schemes
*/
/*****************************************
* # PRELIMINARIES REMINDERS ABOUT DEPENDENT TYPES
* AND IMPLEMENTING CONTEXT-EXTENSION
* (CATEGORIES WITH FAMILIES) WHICH COMPUTES
******************************************/
constant symbol
Con : TYPE;
constant symbol
Ty : Con → TYPE;
constant symbol
◇ : Con;
injective symbol
▹ : Π (Γ : Con), Ty Γ → Con;
notation ▹ infix right 90;
constant symbol
Sub : Con → Con → TYPE;
symbol
∘ : Π [Δ Γ Θ], Sub Δ Γ → Sub Θ Δ → Sub Θ Γ;
notation ∘ infix right 80;
rule /* assoc */
$γ ∘ ($δ ∘ $θ) ↪ ($γ ∘ $δ) ∘ $θ;
constant symbol
id : Π [Γ], Sub Γ Γ;
rule /* idr */
$γ ∘ id ↪ $γ
with /* idl */
id ∘ $γ ↪ $γ;
symbol
'ᵀ_ : Π [Γ Δ], Ty Γ → Sub Δ Γ → Ty Δ;
notation 'ᵀ_ infix left 70;
rule /* 'ᵀ_-∘ */
$A 'ᵀ_ $γ 'ᵀ_ $δ ↪ $A 'ᵀ_( $γ ∘ $δ )
with /* 'ᵀ_-id */
$A 'ᵀ_ id ↪ $A;
constant symbol
Tm : Π (Γ : Con), Ty Γ → TYPE;
symbol
'ᵗ_ : Π [Γ A Δ], Tm Γ A → Π (γ : Sub Δ Γ), Tm Δ (A 'ᵀ_ γ);
notation 'ᵗ_ infix left 70;
rule /* 'ᵗ_-∘ */
$a 'ᵗ_ $γ 'ᵗ_ $δ ↪ $a 'ᵗ_( $γ ∘ $δ )
with /* 'ᵗ_-id */
$a 'ᵗ_ id ↪ $a;
injective symbol
ε : Π [Δ], Sub Δ ◇;
rule /* ε-∘ */
ε ∘ $γ ↪ ε
with /* ◇-η */
@ε ◇ ↪ id;
injective symbol
pₓ : Π [Γ A], Sub (Γ ▹ A) Γ;
injective symbol
qₓ : Π [Γ A], Tm (Γ ▹ A) (A 'ᵀ_ pₓ);
injective symbol
&ₓ : Π [Γ Δ A], Π (γ : Sub Δ Γ), Tm Δ (A 'ᵀ_ γ) → Sub Δ (Γ ▹ A);
notation &ₓ infix left 70;
rule /* &ₓ-∘ */
($γ &ₓ $a) ∘ $δ ↪ ($γ ∘ $δ &ₓ ($a 'ᵗ_ $δ));
rule /* ▹-β₁ */
pₓ ∘ ($γ &ₓ $a) ↪ $γ;
rule /* ▹-β₂ */
qₓ 'ᵗ_ ($γ &ₓ $a) ↪ $a;
rule /* ▹-η */
(@&ₓ _ _ $A (@pₓ _ $A) qₓ) ↪ id;
/*****************************************
* # CATEGORIES, FUNCTORS, ISOFIBRATIONS OF CATEGORIES
******************************************/
constant symbol cat : TYPE;
constant symbol func : Π (A B : cat), TYPE;
constant symbol catd: Π (X : cat), TYPE;
constant symbol funcd : Π [X Y : cat] (A : catd X) (F : func X Y) (B : catd Y), TYPE;
/* -----
* ## categories and functors (objects) */
constant symbol Terminal_cat : cat;
constant symbol Id_func : Π [A : cat], func A A;
symbol ∘> : Π [A B C: cat], func A B → func B C → func A C;
notation ∘> infix left 90; // compo_func
rule $X ∘> ($G ∘> $H) ↪ ($X ∘> $G) ∘> $H
with $F ∘> Id_func ↪ $F
with Id_func ∘> $F ↪ $F;
injective symbol Terminal_func : Π (A : cat), func A Terminal_cat;
rule (@∘> $A $B $C $F (Terminal_func $B)) ↪ (Terminal_func $A)
with (Terminal_func (Terminal_cat)) ↪ Id_func;
/* -----
* ## fibred (dependent) categories */
constant symbol Terminal_catd : Π (A : cat), catd A;
symbol Fibre_catd : Π [X I : cat] (A : catd X) (x : func I X), catd I;
rule Fibre_catd $A Id_func ↪ $A
with Fibre_catd $A ($x ∘> $y) ↪ Fibre_catd (Fibre_catd $A $y) $x;
rule Fibre_catd (Terminal_catd _) _ ↪ (Terminal_catd _);
/* -----
* ## fibred (dependent) functors */
constant symbol Id_funcd : Π [X : cat] [A : catd X], funcd A Id_func A;
symbol ∘>d: Π [X Y Z : cat] [A : catd X] [B : catd Y] [C : catd Z] [F : func X Y]
[G : func Y Z], funcd A F B → funcd B G C → funcd A (F ∘> G) C;
notation ∘>d infix left 90; // compo_funcd
rule $X ∘>d ($G ∘>d $H) ↪ ($X ∘>d $G) ∘>d $H
with $F ∘>d Id_funcd ↪ $F
with Id_funcd ∘>d $F ↪ $F;
injective symbol Terminal_funcd : Π [X Y: cat] (A : catd X) (xy : func X Y), funcd A xy (Terminal_catd Y);
injective symbol Fibre_intro_funcd : Π [X I I' : cat] (A : catd X) (x : func I X) [J : catd I'] (i : func I' I) ,
funcd J (i ∘> x) A → funcd J i (Fibre_catd A x);
injective symbol Fibre_elim_funcd : Π [X I : cat] (A : catd X) (x : func I X), funcd (Fibre_catd A x) x A;
// naturality
rule $HH ∘>d (Fibre_intro_funcd $A $x _ $FF) ↪ (Fibre_intro_funcd $A $x _ ($HH ∘>d $FF))
with (Fibre_elim_funcd /*DON'T SPECIFY, ALLOW CONVERSION: (Fibre_catd $A $y) */ _ $x) ∘>d Fibre_elim_funcd $A $y
↪ Fibre_elim_funcd $A ($x ∘> $y);
// beta, eta
rule (Fibre_intro_funcd $A $x _ $FF) ∘>d (Fibre_elim_funcd $A $x) ↪ $FF
with (Fibre_intro_funcd $A $x Id_func (Fibre_elim_funcd $A $x)) ↪ Id_funcd;
rule Fibre_elim_funcd $A Id_func ↪ Id_funcd
with Fibre_intro_funcd $A Id_func $i $FF ↪ $FF
with (Fibre_intro_funcd /* (Fibre_catd $A $y) */ _ $x $i (Fibre_intro_funcd $A $y /* ($i ∘> $x) */ _ $FF))
↪ (Fibre_intro_funcd $A ($x ∘> $y) $i $FF);
rule (Terminal_funcd (Terminal_catd _) $xy) ↪ Fibre_elim_funcd (Terminal_catd _) $xy;
rule ($FF ∘>d (Terminal_funcd $B $xy)) ↪ (Terminal_funcd _ _);
rule (Terminal_funcd (Terminal_catd _) Id_func) ↪ Id_funcd; // confluent...
/*****************************************
* # CONTEXT EXTENSION FOR CATEGORIES
******************************************/
injective symbol Context_cat : Π [X : cat], catd X → cat;
injective symbol Context_elimCat_func : Π [X : cat] (A : catd X), func (Context_cat A) X;
injective symbol Context_elimCatd_funcd : Π [X : cat] (A : catd X), funcd (Terminal_catd _) (Context_elimCat_func A) A;
injective symbol Context_intro_func : Π [X Y : cat] [A : catd X] [B : catd Y] [xy : func X Y],
funcd A xy B → func (Context_cat A) (Context_cat B);
rule Context_cat (Terminal_catd $A) ↪ $A;
rule Context_elimCat_func (Terminal_catd $A) ↪ Id_func;
rule Context_elimCatd_funcd (Terminal_catd $A) ↪ Id_funcd;
rule Context_intro_func (Id_funcd) ↪ Id_func
with Context_intro_func (Terminal_funcd $A $xy) ↪ Context_elimCat_func $A ∘> $xy;
// definable symbols
injective symbol Context_intro_single_func [Y : cat] [B : catd Y] [X] (xy : func X Y)
(FF : funcd (Terminal_catd X) xy B) : func X (Context_cat B);
rule Context_intro_single_func _ $FF ↪ @Context_intro_func _ _ (Terminal_catd _) _ _ $FF;
injective symbol Context_intro_congr_func [Y : cat] [B : catd Y] [X] (xy : func X Y)
: func (Context_cat (Fibre_catd B xy)) (Context_cat B);
rule Context_intro_congr_func $xy ↪ Context_intro_func (Fibre_elim_funcd _ $xy);
// beta rules
rule (@Context_intro_func _ _ $A $B $F $FF) ∘> (Context_elimCat_func $B)
↪ (Context_elimCat_func $A) ∘> $F;
rule (Fibre_elim_funcd (Terminal_catd $X) (@Context_intro_func _ _ (Terminal_catd $X) $B $xy $FF)) ∘>d (Context_elimCatd_funcd $B)
↪ $FF;
// LAMBDAPI BUG? this unification rule doesnt work... so finding an alternative
// unif_rule Context_cat $B ≡ (Context_cat (Terminal_catd (Context_cat $X))) ↪ [ $B ≡ $X];
symbol rule_Context_cat_Terminal_catd_func [X: cat] (A: catd X)
: func (Context_cat (Terminal_catd (Context_cat A))) (Context_cat A)
≔ begin assume X A; simplify; refine Id_func; end;
// eta rules
rule Context_intro_func (Context_elimCatd_funcd $A)
↪ rule_Context_cat_Terminal_catd_func $A;
rule @Context_intro_func _ _ _ _ $xy (Fibre_elim_funcd (Terminal_catd _) _) ↪ $xy;
// naturality rules
// confluent ... and both rules required despite in meta the latter conversion is derivable from the former rules
rule (@Context_intro_func $X $Y $A $B $F $FF) ∘> (@Context_intro_func $Y $Z $B $C $G $GG)
↪ Context_intro_func ($FF ∘>d $GG)
with $z ∘> @Context_intro_func _ _ (Terminal_catd _) _ _ $FF
↪ Context_intro_func ( (Fibre_elim_funcd (Terminal_catd _) $z) ∘>d $FF );
assert [X Y : cat] [B : catd Y] [xy : func X Y] (FF : funcd (Terminal_catd X) xy B) [Z] [z : func Z X] ⊢
(@Context_intro_func _ _ _ _ z (Terminal_funcd (Terminal_catd Z) z)) ∘> Context_intro_func FF
≡ Context_intro_func ( (Terminal_funcd (Terminal_catd Z) z) ∘>d FF );
/* voila */