forked from daleroberts/heston
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathheston.r
213 lines (177 loc) · 6.86 KB
/
heston.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
## The Heston Stochastic Volatility model
##
## - Closed form solution for a European call option
## - Monte Carlo solution (Absorbing at zero)
## - Monte Carlo solution (Reflecting at zero)
## - Monte Carlo solution (Reflecting at zero + Milstein method)
## - Monte Carlo solution (Alfonsi)
## - Plot implied volality surface
##
## Dale Roberts <[email protected]>
##
## PARAMETERS
##
## lambda: mean-reversion speed
## vbar: long-term average volatility
## eta: volatility of vol process
## rho: correlation between stock and vol
## v0: initial volatility
## r: risk-free interest rate
## tau: time to maturity
## S0: initial share price
## K: strike price
##
## MODEL
##
## dS_t = S_t r dt + S_t sqrt(V_t)dW_t^S
## dV_t = \lambda (\vbar - V_t)dt - eta sqrt(V_t)dW_t^V
## with d<W^S,W^V>_t = \rho dt
ONEYEAR <- 250
Moneyness <- function(S, K, tau, r) {
K*exp(-r*tau)/S
}
BlackScholesCall <- function(S0, K, tau, r, sigma, EPS=0.01) {
d1 <- (log(S0/K) + (r + 0.5*sigma^2)*tau)/(sigma*sqrt(tau))
d2 <- d1 - sigma*sqrt(tau)
if (T < EPS) {
return(max(S0-K,0))
} else {
return(S0*pnorm(d1) - K*exp(-r*(tau))*pnorm(d2))
}
}
ImpliedVolCall <- function(S0, K, tau, r, price) {
f <- function(x) BlackScholesCall(S0,K,tau,r,x) - price
if (f(-1) * f(1) > 0)
return(NA)
uniroot(f,c(-1,1))$root
}
HestonCallClosedForm <-
function(lambda, vbar, eta, rho, v0, r, tau, S0, K) {
PIntegrand <- function(u, lambda, vbar, eta, rho, v0, r, tau, S0, K, j) {
F <- S0*exp(r*tau)
x <- log(F/K)
a <- lambda * vbar
if (j == 1) {
b <- lambda - rho* eta
alpha <- - u^2/2 - u/2 * 1i + 1i * u
beta <- lambda - rho * eta - rho * eta * 1i * u
} else {
b <- lambda
alpha <- - u^2/2 - u/2 * 1i
beta <- lambda - rho * eta * 1i * u
}
gamma <- eta^2/2
d <- sqrt(beta^2 - 4*alpha*gamma)
rplus <- (beta + d)/(2*gamma)
rminus <- (beta - d)/(2*gamma)
g <- rminus / rplus
D <- rminus * (1 - exp(-d*tau))/(1-g*exp(-d*tau))
C <- lambda * (rminus * tau - 2/(eta^2) * log( (1-g*exp(-d*tau))/(1-g) ) )
top <- exp(C*vbar + D*v0 + 1i*u*x)
bottom <- (1i * u)
Re(top/bottom)
}
P <- function(lambda, vbar, eta, rho, v0, r, tau, S0, K, j) {
value <- integrate(PIntegrand, lower = 0, upper = Inf,
lambda, vbar, eta, rho, v0, r, tau,
S0, K, j, subdivisions=1000)$value
0.5 + 1/pi * value
}
A <- S0*P(lambda, vbar, eta, rho, v0, r, tau, S0, K, 1)
B <- K*exp(-r*tau)*P(lambda, vbar, eta, rho, v0, r, tau, S0, K, 0)
A-B
}
HestonCallMonteCarlo <-
function(lambda, vbar, eta, rho, v0, r, tau, S0, K, nSteps=2000, nPaths=3000, vneg=2) {
n <- nSteps
N <- nPaths
dt <- tau / n
negCount <- 0
S <- rep(S0,N)
v <- rep(v0,N)
for (i in 1:n)
{
W1 <- rnorm(N);
W2 <- rnorm(N);
W2 <- rho*W1 + sqrt(1 - rho^2)*W2;
sqvdt <- sqrt(v*dt)
S <- S*exp((r-v/2)*dt + sqrt(v * dt) * W1)
if ((vneg == 3) & (2*lambda*vbar/(eta^2) <= 1)) {
cat("Variance not guaranteed to be positive with choice of lambda, vbar, and eta\n")
cat("Defaulting to Reflection + Milstein method\n")
vneg = 2
}
if (vneg == 0){
## Absorbing condition
v <- v + lambda*(vbar - v)* dt + eta * sqvdt * W2
negCount <- negCount + length(v[v < 0])
v[v < 0] <- 0
}
if (vneg == 1){
## Reflecting condition
sqvdt <- sqrt(v*dt)
v <- v + lambda*(vbar - v)* dt + eta * sqvdt * W2
negCount <- negCount + length(v[v < 0])
v <- ifelse(v<0, -v, v)
}
if (vneg == 2) {
## Reflecting condition + Milstein
v <- (sqrt(v) + eta/2*sqrt(dt)*W2)^2 - lambda*(v-vbar)*dt - eta^2/4*dt
negCount <- negCount + length(v[v < 0])
v <- ifelse(v<0, -v, v)
}
if (vneg == 3) {
## Alfonsi - See Gatheral p.23
v <- v -lambda*(v-vbar)*dt +eta*sqrt(v*dt)*W2 - eta^2/2*dt
}
}
negCount <- negCount / (n*N);
## Evaluate mean call value for each path
V <- exp(-r*tau)*(S>K)*(S - K); # Boundary condition for European call
AV <- mean(V);
AVdev <- 2 * sd(V) / sqrt(N);
list(value=AV, lower = AV-AVdev, upper = AV+AVdev, zerohits = negCount)
}
HestonSurface <- function(lambda, vbar, eta, rho, v0, r, tau, S0, K, N=5, min.tau = 1/ONEYEAR) {
LogStrikes <- seq(-0.5, 0.5, length=N)
Ks <- rep(0.0,N)
taus <- seq(min.tau, tau, length=N)
vols <- matrix(0,N,N)
TTM <- Money <- Vol <- rep(0,N*N)
HestonPrice <- function(K, tau) {
HestonCallClosedForm(lambda, vbar, eta, rho, v0, r, tau, S0, K)
}
n <- 1
for (i in 1:N) {
for (j in 1:N) {
Ks[i] <- exp(r * taus[j]+LogStrikes[i]) * S0
price <- HestonPrice(Ks[i],taus[j])
iv <- ImpliedVolCall(S0, Ks[i], taus[j], r, price)
TTM[n] <- taus[j] * ONEYEAR # in days
Money[n] <- Moneyness(S0,Ks[i],taus[j],r)
Vol[n] <- iv
n <- n+1
}
}
data.frame(TTM=TTM, Moneyness=Money, ImpliedVol=Vol)
}
PlotHestonSurface <-
function(lambda=6.21, vbar=0.019, eta=0.61, rho=-0.7, v0=0.010201, r=0.0319,
tau=1.0, S0=100, K=100, N=30, min.tau = 1/ONEYEAR, ...) {
Ks <- seq(0.8*K, 1.25 * K, length=N)
taus <- seq(0.21, tau, length=N)
HestonPrice <- Vectorize(function(k, t) {
HestonCallClosedForm(lambda, vbar, eta, rho, v0, r, t, S0, k)})
IVHeston <- Vectorize(function(k,t) { ImpliedVolCall(S0, k, t, r, HestonPrice(k,t))})
z <- outer(Ks, taus, IVHeston)
nrz <- nrow(z)
ncz <- ncol(z)
nb.col <- 256
color <- heat.colors(nb.col)
facet <- - (z[-1, -1] + z[-1, -ncz] + z[-nrz, -1] + z[-nrz, -ncz])
facetcol <- cut(facet, nb.col)
persp(x=Ks, y=taus, z, theta = 40, phi = 20, expand = 0.5, col=color[facetcol],
xlab="Strikes", ylab="Time to maturity", zlab="Implied Volatility",
ticktype="detailed", ...) -> res
return(invisible(z))
}